Method of Sentiment Preservation in the Kazakh-Turkish Machine Translation | SpringerLink
Skip to main content

Method of Sentiment Preservation in the Kazakh-Turkish Machine Translation

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12250))

Included in the following conference series:

  • 1526 Accesses

Abstract

This paper describes characteristics which affect the sentiment analysis in the Kazakh language texts, models of morphological rules and morphological analysis algorithms, formal models of simple sentence structures in the Kazakh-Turkish combination, models and methods of sentiment analysis of texts in the Kazakh language. The studies carried out to compare the morphological and syntactic rules of the Kazakh and Turkish languages prove their closeness by structure. In this respect, we can assume that taking into account sentiment in machine translation for these combinations of languages will give a good result at preserving the text meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kazakh grammar: Phonetics, word formation, morphology, syntax in Kazakh, Astana, Kazakhstan (2002)

    Google Scholar 

  2. Lewis, G.: Turkish Grammar, Oxford University Press (2001)

    Google Scholar 

  3. Promt, http://www.promt.ru/company/technology/machine_translation/, Accessed 15 Dec 2019

  4. Koehn, F.J., Och, M.D.: Statistical phrase-based translation. In: Proceedings of NAACL-HLT, pp. 48–54. Edmonton, Canada (2003)

    Google Scholar 

  5. Koehn, H., et al.: Moses: open source toolkit for statistical machine translation. In: Proceedings of the ACL Demo and Poster Sessions, pp. 177–180. Association for Computational Linguistics, Prague (2007)

    Google Scholar 

  6. Lagarda, A.L., Alabau, V., Silva, F. R., D´ıaz-de-Lianono, E.: Statistical post-editing of a rule-based machine translation system. In: Proceedings of NAACL HLT. Short Papers, Boulder, pp. 217–220. Association for Computational Linguistics, Colorado (2009)

    Google Scholar 

  7. Hamzaoğlu, I.: Machine translation from Turkish to other Turkic languages and an implementation for the Azeri languages. MSc Thesis. İstanbul: Bogazici University (1993)

    Google Scholar 

  8. Altıntaş, K.: Turkish to Crimean Tatar Machine Translation System. MSc Thesis, Bilkent University, Ankara (2000)

    Google Scholar 

  9. Tantuğ, A.C., Adalı, E., Oflazer, K.: Computer analysis of the turkmen language morphology. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, pp. 186–193. Springer, Heidelberg (2006). https://doi.org/10.1007/11816508_20

    Chapter  Google Scholar 

  10. Orhun, M., Tantuğ, A. C., Adalı, E.: Rule based analysis of the uyghur nouns. In: Proceedings of the International Conference on Asian Language Processing (IALP), Chiang Mai, Thailand (2008)

    Google Scholar 

  11. Abduali, B., Akhmadieva, Z., Zholdybekova, S., Tukeyev, U., Rakhimova, D.: Study of the problem of creating structural transfer rules and lexical selection for the Kazakh-Russian machine translation system on Apertium platform. In: Proceedings of the International Conference Turkic Languages-2015, pp. 5–9. Academy of Sciences of the Republic of Tatarstan Press, Tatarstan (2015)

    Google Scholar 

  12. Tukeyev, U., Zhumanov, Z., Rakhimova, D., Kartbayev, A.: Combinational circuits model of kazakh and russian languages morphology. In: Abstracts of International Conference Computational and Informational Technologies in Science, Engineering and Education, pp. 241–242. Al-Farabi KazNU Press, Almaty, Kazakhstan (2015)

    Google Scholar 

  13. Salimzyanov, I., Washington, J., Tyers, F.: A free/open-source Kazakh-Tatar machine translation system. Machine Translation Summit XIV (2013)

    Google Scholar 

  14. Tyers, F.M., Washington, J.N., Salimzyanov, I., Batalov, R.: A prototype machine translation system for Tatar and Bashkir based on free/open-source components. In: First Workshop on Language Resources and Technologies for Turkic Languages, pp. 11–14 (2012)

    Google Scholar 

  15. Bekmanova, G., et al.: A uniform morphological analyzer for the Kazakh and Turkish languages. In: Proceedings of the Sixth International Conference on Analysis of Images, Social Networks and Texts - AIST 2017, pp. 20–30. Moscow, Russia (2017)

    Google Scholar 

  16. Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)

    Google Scholar 

  17. Yelibayeva, G., Mukanova, A., Sharipbay, A., Zulkhazhav, A., Yergesh, B., Bekmanova, G.: Metalanguage and knowledgebase for kazakh morphology. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 693–706. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_51

    Chapter  Google Scholar 

  18. Zetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91(2), 257–263 (2016)

    Google Scholar 

  19. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  Google Scholar 

  20. Loukachevitch, N.V., Chetviorkin, I.I.: Evaluating Sentiment Analysis Systems in Russian. Artificial intelligence and decision-making, 1, 25–33. Russian (2014)

    Google Scholar 

  21. Chetviorkin, I., Loukachevitch, N.: Extraction of russian sentiment lexicon for product meta-domain. In: Proceedings of COLING 2012, pp. 593–610 (2012)

    Google Scholar 

  22. Akba, F., Uçan, A., Sezer, E.A., Sever, H.: Assessment of feature selection metrics for sentiment analyses: Turkish movie reviews. In: Proceedings of the 8th European Conference on Data Mining, pp. 180–184 (2014)

    Google Scholar 

  23. Eryiğit, G., Çetin, F., Yanık, M., Temel, T., Çiçekli, I.: TURKSENT: A sentiment annotation tool for social media. In: Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with Discourse, ACL 2013, Sofia, Bulgaria (2013)

    Google Scholar 

  24. Sixto, J., Almeida, A., López-de-Ipiña, D.: An approach to subjectivity detection on twitter using the structured information. In: International Conference on Computational Collective Intelligence. ICCCI 2016, LNCS, vol. 9875. Springer, Cham (2016)

    Google Scholar 

  25. Samir, T., Ibrahim, A.-N.: Semantic sentiment analysis in arabic social media. J. King Saud Univ. Comp. Inf, Sci. 29(2), 229–233 (2016)

    Google Scholar 

  26. Sakenovich, N.S., Zharmagambetov, A.S.: On one approach of solving sentiment analysis task for kazakh and russian languages using deep learning. In: International Conference on Computational Collective Intelligence. ICCCI 2016. LNCS, vol. 9876. Springer, Cham (2016)

    Google Scholar 

  27. Abdullin, Y.B., Ivanov, V.V.: Deep learning model for bilingual sentiment classification of short texts. Sci. Tech. J. Inf. Technol. Mech. Optics 17(1), 129–136 (2017)

    Google Scholar 

  28. Lohar, P., Afli, H., Way, A.: Maintaining sentiment polarity in translation of user-generated content. Prague Bull. Math.Linguist. 108, 73–84 (2017)

    Article  Google Scholar 

  29. Gervasi, O., Franzoni, V., Riganelli, M., Tasso, S.: Automating facial emotion recognition. Web. Intelligence. 17, 17–27 (2019). https://doi.org/10.3233/WEB-190397

    Article  Google Scholar 

  30. Majumder, N., et al.: DialogueRNN: an attentive rnn for emotion detection in conversations. In: Proceeding of the AAAI Conference on Artificial Intelligence, 33, pp. 6818–6825. Honolulu (2019)

    Google Scholar 

  31. Franzoni, V., Milani, A., Nardi, D., Vallverdu, J.: Emotional machines: The next revolution. Web Intell. 17, 1–7 (2019). https://doi.org/10.3233/WEB-190395

    Article  Google Scholar 

  32. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh text and their polarity. Web Intell. 17(1), 9–15 (2019)

    Article  Google Scholar 

  33. Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-Based Sentiment Analysis of Kazakh Sentences. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 669–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_47

    Chapter  Google Scholar 

  34. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh phrases based on morphological rules. J. Theor. Appl. Sci. Tech. 2(38), 39–42 (2016)

    Google Scholar 

  35. Sharipbayev, A., Bekmanova, G., Buribayeva, A., Yergesh, B., et al.: Semantic neural network model of morphological rules of the agglutinative languages. Procceding of the SCIS/ISIS 2012, pp. 1094–1099. Kobe, Japan (2012)

    Google Scholar 

  36. Jurafsky, D., Martin, J.H.: Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2nd ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA (2009)

    Google Scholar 

  37. Chomsky, N.: Syntactic Structures. The Hague: Mouton, 1957. (Reissue: Chomsky N. Syntactic Structures. – De Gruyter Mouton) (2002)

    Google Scholar 

  38. Sharipbay, A., Razakhova, B., Mukanova, A., Yergesh, B, Yelibayeva, G.: Syntax parsing model of Kazakh simple sentences. In: proceedings of the Second International Conference on Data Science, E-Learning and Information Systems DATA 2019, Article 54, p. 5. Dubai (2019)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the grant financing for scientific and technical programs and projects by the Ministry of Science and Education of the Republic of Kazakhstan (Grant No. AP05132249, 2018–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulmira Bekmanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhetkenbay, L., Bekmanova, G., Yergesh, B., Sharipbay, A. (2020). Method of Sentiment Preservation in the Kazakh-Turkish Machine Translation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics