Abstract
This paper describes characteristics which affect the sentiment analysis in the Kazakh language texts, models of morphological rules and morphological analysis algorithms, formal models of simple sentence structures in the Kazakh-Turkish combination, models and methods of sentiment analysis of texts in the Kazakh language. The studies carried out to compare the morphological and syntactic rules of the Kazakh and Turkish languages prove their closeness by structure. In this respect, we can assume that taking into account sentiment in machine translation for these combinations of languages will give a good result at preserving the text meaning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kazakh grammar: Phonetics, word formation, morphology, syntax in Kazakh, Astana, Kazakhstan (2002)
Lewis, G.: Turkish Grammar, Oxford University Press (2001)
Promt, http://www.promt.ru/company/technology/machine_translation/, Accessed 15 Dec 2019
Koehn, F.J., Och, M.D.: Statistical phrase-based translation. In: Proceedings of NAACL-HLT, pp. 48–54. Edmonton, Canada (2003)
Koehn, H., et al.: Moses: open source toolkit for statistical machine translation. In: Proceedings of the ACL Demo and Poster Sessions, pp. 177–180. Association for Computational Linguistics, Prague (2007)
Lagarda, A.L., Alabau, V., Silva, F. R., D´ıaz-de-Lianono, E.: Statistical post-editing of a rule-based machine translation system. In: Proceedings of NAACL HLT. Short Papers, Boulder, pp. 217–220. Association for Computational Linguistics, Colorado (2009)
Hamzaoğlu, I.: Machine translation from Turkish to other Turkic languages and an implementation for the Azeri languages. MSc Thesis. İstanbul: Bogazici University (1993)
Altıntaş, K.: Turkish to Crimean Tatar Machine Translation System. MSc Thesis, Bilkent University, Ankara (2000)
Tantuğ, A.C., Adalı, E., Oflazer, K.: Computer analysis of the turkmen language morphology. In: Salakoski, T., Ginter, F., Pyysalo, S., Pahikkala, T. (eds.) FinTAL 2006. LNCS (LNAI), vol. 4139, pp. 186–193. Springer, Heidelberg (2006). https://doi.org/10.1007/11816508_20
Orhun, M., Tantuğ, A. C., Adalı, E.: Rule based analysis of the uyghur nouns. In: Proceedings of the International Conference on Asian Language Processing (IALP), Chiang Mai, Thailand (2008)
Abduali, B., Akhmadieva, Z., Zholdybekova, S., Tukeyev, U., Rakhimova, D.: Study of the problem of creating structural transfer rules and lexical selection for the Kazakh-Russian machine translation system on Apertium platform. In: Proceedings of the International Conference Turkic Languages-2015, pp. 5–9. Academy of Sciences of the Republic of Tatarstan Press, Tatarstan (2015)
Tukeyev, U., Zhumanov, Z., Rakhimova, D., Kartbayev, A.: Combinational circuits model of kazakh and russian languages morphology. In: Abstracts of International Conference Computational and Informational Technologies in Science, Engineering and Education, pp. 241–242. Al-Farabi KazNU Press, Almaty, Kazakhstan (2015)
Salimzyanov, I., Washington, J., Tyers, F.: A free/open-source Kazakh-Tatar machine translation system. Machine Translation Summit XIV (2013)
Tyers, F.M., Washington, J.N., Salimzyanov, I., Batalov, R.: A prototype machine translation system for Tatar and Bashkir based on free/open-source components. In: First Workshop on Language Resources and Technologies for Turkic Languages, pp. 11–14 (2012)
Bekmanova, G., et al.: A uniform morphological analyzer for the Kazakh and Turkish languages. In: Proceedings of the Sixth International Conference on Analysis of Images, Social Networks and Texts - AIST 2017, pp. 20–30. Moscow, Russia (2017)
Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)
Yelibayeva, G., Mukanova, A., Sharipbay, A., Zulkhazhav, A., Yergesh, B., Bekmanova, G.: Metalanguage and knowledgebase for kazakh morphology. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 693–706. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_51
Zetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91(2), 257–263 (2016)
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)
Loukachevitch, N.V., Chetviorkin, I.I.: Evaluating Sentiment Analysis Systems in Russian. Artificial intelligence and decision-making, 1, 25–33. Russian (2014)
Chetviorkin, I., Loukachevitch, N.: Extraction of russian sentiment lexicon for product meta-domain. In: Proceedings of COLING 2012, pp. 593–610 (2012)
Akba, F., Uçan, A., Sezer, E.A., Sever, H.: Assessment of feature selection metrics for sentiment analyses: Turkish movie reviews. In: Proceedings of the 8th European Conference on Data Mining, pp. 180–184 (2014)
Eryiğit, G., Çetin, F., Yanık, M., Temel, T., Çiçekli, I.: TURKSENT: A sentiment annotation tool for social media. In: Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with Discourse, ACL 2013, Sofia, Bulgaria (2013)
Sixto, J., Almeida, A., López-de-Ipiña, D.: An approach to subjectivity detection on twitter using the structured information. In: International Conference on Computational Collective Intelligence. ICCCI 2016, LNCS, vol. 9875. Springer, Cham (2016)
Samir, T., Ibrahim, A.-N.: Semantic sentiment analysis in arabic social media. J. King Saud Univ. Comp. Inf, Sci. 29(2), 229–233 (2016)
Sakenovich, N.S., Zharmagambetov, A.S.: On one approach of solving sentiment analysis task for kazakh and russian languages using deep learning. In: International Conference on Computational Collective Intelligence. ICCCI 2016. LNCS, vol. 9876. Springer, Cham (2016)
Abdullin, Y.B., Ivanov, V.V.: Deep learning model for bilingual sentiment classification of short texts. Sci. Tech. J. Inf. Technol. Mech. Optics 17(1), 129–136 (2017)
Lohar, P., Afli, H., Way, A.: Maintaining sentiment polarity in translation of user-generated content. Prague Bull. Math.Linguist. 108, 73–84 (2017)
Gervasi, O., Franzoni, V., Riganelli, M., Tasso, S.: Automating facial emotion recognition. Web. Intelligence. 17, 17–27 (2019). https://doi.org/10.3233/WEB-190397
Majumder, N., et al.: DialogueRNN: an attentive rnn for emotion detection in conversations. In: Proceeding of the AAAI Conference on Artificial Intelligence, 33, pp. 6818–6825. Honolulu (2019)
Franzoni, V., Milani, A., Nardi, D., Vallverdu, J.: Emotional machines: The next revolution. Web Intell. 17, 1–7 (2019). https://doi.org/10.3233/WEB-190395
Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh text and their polarity. Web Intell. 17(1), 9–15 (2019)
Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-Based Sentiment Analysis of Kazakh Sentences. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 669–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_47
Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh phrases based on morphological rules. J. Theor. Appl. Sci. Tech. 2(38), 39–42 (2016)
Sharipbayev, A., Bekmanova, G., Buribayeva, A., Yergesh, B., et al.: Semantic neural network model of morphological rules of the agglutinative languages. Procceding of the SCIS/ISIS 2012, pp. 1094–1099. Kobe, Japan (2012)
Jurafsky, D., Martin, J.H.: Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2nd ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA (2009)
Chomsky, N.: Syntactic Structures. The Hague: Mouton, 1957. (Reissue: Chomsky N. Syntactic Structures. – De Gruyter Mouton) (2002)
Sharipbay, A., Razakhova, B., Mukanova, A., Yergesh, B, Yelibayeva, G.: Syntax parsing model of Kazakh simple sentences. In: proceedings of the Second International Conference on Data Science, E-Learning and Information Systems DATA 2019, Article 54, p. 5. Dubai (2019)
Acknowledgments
The work was supported by the grant financing for scientific and technical programs and projects by the Ministry of Science and Education of the Republic of Kazakhstan (Grant No. AP05132249, 2018–2020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhetkenbay, L., Bekmanova, G., Yergesh, B., Sharipbay, A. (2020). Method of Sentiment Preservation in the Kazakh-Turkish Machine Translation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-58802-1_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58801-4
Online ISBN: 978-3-030-58802-1
eBook Packages: Computer ScienceComputer Science (R0)