Flexible Model for Organizing Blended and Distance Learning | SpringerLink
Skip to main content

Flexible Model for Organizing Blended and Distance Learning

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12250))

Included in the following conference series:

Abstract

The proposed flexible model for the organization of mixed and distance learning involves the creation of an individual learning path for student testing before starting training. Based on the learning outcomes, the student is credited to the learning path. The learning path consists of mandatory and optional modules for training, optional modules can be skipped by passing the test successfully. The training model is represented using the ontological model, and the decision-making rules for the model are logical rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conole, G., de Laat, M., Darby, J.: Disruptive technologies’, ‘pedagogical innovation’: what’s new? findings from an in-depth study of students’ use and perception of technology. Comput. Educ. 50(2), 511–524 (2008)

    Article  Google Scholar 

  2. Dias, S.B., Diniz, J.A., Hadjileontiadis, L.J.: Towards an Intelligent Learning Management System Under Blended Learning Trends, Profiles and Modeling Perspectives. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02078-5

    Book  Google Scholar 

  3. Redecker, C., Ala-Mutka K., Bacigalupo M., Ferrari A., Punie, Y.: Learning 2.0: The Impact of web 2.0 Innovations on Education and Training in Europe. Joint Research Centre (JRC)-Institute for Prospective Technological Studies (2009). http://is.jrc.ec.europa.eu/pages/Learning-2.0.html

  4. Sharipbay, A., Barlybayev, A., Sabyrov, T.: Measure the usability of graphical user interface. In: New Advances in Information Systems and Technologies. AISC, vol. 444, pp. 1037–1045. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31232-3_98

  5. Sharipbay, A., Omarbekova, A., Seifullina, A., Zakirova, A.: Creating intelligent electronic textbooks based on knowledge management. In: The World Congress on Engineering 2014, vol. 1, pp. 224–227 (2014)

    Google Scholar 

  6. Sharipbay, A., Omarbekova, A., Nurgazinova, G.: Creating intelligent electronic textbooks in Kazakhstan. In: 6th International Conference on Education and New Learning Technologies. Barcelona/Spain, pp. 2926–2933 (2014)

    Google Scholar 

  7. Nurgazinova, G., Golenkov, V., Sharipbay, A., Omarbekova, A., Barlybayev, A.: Designing of intelligent reference system for algebra based on the knowledge database. In: International Conference on Control, Automation and Artificial Intelligence, pp. 230–235 (2015)

    Google Scholar 

  8. Köse, U., Deperlioglu, O.: Intelligent learning environments wthin blended learning for ensuring effective C programming course. Int. J. Artif. Intell. Appl. 3 (2012). https://doi.org/10.5121/ijaia.2012.3109

  9. Yigit, T., Koyun, A., Yüksel, A., Cankaya, I., Köse, U.: An Example Application of Artificial Intelligence Supported Blended Learning Education Program in Computer Engineering (2014). https://doi.org/10.4018/978-1-4666-6276-6.ch012

  10. Newell, D., Davies, P., Austin, R., Moore, P., Sharma, M.: Models for an intelligent context-aware blended m-learning system. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, Gwangiu, pp. 405–410 (2015). https://doi.org/10.1109/waina.2015.25

  11. Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)

    Google Scholar 

  12. Bekmanova, G., Sharipbay, A., Omarbekova, A., Yelibayeva, G., Yergesh, B.: Adequate assessment of the customers actual reviews through comparing them with the fake ones. In: Proceedings of 2017 International Conference on Engineering and Technology, pp. 1–4 (2018)

    Google Scholar 

  13. Mukanova, A., Yergesh, B., Bekmanova, G., Razakhova, B., Sharipbay, A.: Formal models of nouns in the Kazakh language. Leonardo Electron. J. Pract. Technol. 13(25), 264–273 (2014)

    Google Scholar 

  14. Bazarova, M., Zhomartkyzy, G.: Ontological model of professional competences for ICT-specilaists 6D070300. Vestnik KazNITU. №1 (119), pp. 321–328 (2017)

    Google Scholar 

  15. Zulfiya, K., Gulmira, B., Altynbek, S.: Ontological model for student’s knowledge assessment. Paper Presented at the ACM International Conference Proceeding Series (2019)

    Google Scholar 

  16. Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, B.: Ontology-Based Sentiment Analysis of Kazakh Sentences (2017)

    Google Scholar 

  17. Gaeta, M., Orciuoli, F., Ritrovato, P.: Advanced ontology management system for personalised e-Learning. Knowl. Based Syst. 22(4), 292–301 (2009)

    Article  Google Scholar 

  18. Liu, B.L., Hu, B., Wang, X.Y., Zheng, L.: A RDF-based knowledge base implementation for E-learning. New horizon in web-based learning. In: 3rd International Conference on Web-Based Learning, pp. 45–50 (2004)

    Google Scholar 

  19. Wang, L., Zhang, Yu., Liu, T.: A deep learning approach for question answering over knowledge base. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 885–892. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_82

    Chapter  Google Scholar 

  20. Omarbekova, A., Sharipbay, A., Barlybaev, B.: Generation of test questions from RDF files using PYTHON and SPARQL. J. Phys. Conf. Ser. 806(1) (2017)

    Google Scholar 

  21. Omarbekova, A., Nurgazinova, G., Sharipbay, A., Barlybayev, A., Bekmanova, G.: Automatic formation of questions and answers on the basis of the knowledge base. In: Paper presented at the Proceedings of 2017 International Conference on Engineering and Technology (2018)

    Google Scholar 

  22. Yelibayeva, G., Mukanova, A., Sharipbay, A., Zulkhazhav, A., Yergesh, B., Bekmanova, G.: Metalanguage and knowledgebase for Kazakh morphology. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 693–706. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_51

    Chapter  Google Scholar 

  23. Sharipbayev, A., Bekmanova, G., Yergesh, B., Mukanova, A., Buribayeva, A.: Semantic retrieval of information in the Kazakh language in elibraries. J. Int. Sci. Publ. Educ. Alternat. 10(1), 108–115 (2014)

    Google Scholar 

  24. Barlybayev, A., Kaderkeyeva, Z., Bekmanova, G., Sharipbay, A., Omarbekova, A., Altynbek, S.: Intelligent System for Evaluating the Level of Formation of Professional Competencies of Students (2020)

    Google Scholar 

  25. Zulfiya, K., Gulmira, B., Altynbek, S., Assel, O.: A model and a method for assessing students’ competencies in e-learning system. Paper Presented at the ACM International Conference Proceeding Series (2019)

    Google Scholar 

  26. https://protege.stanford.edu/

  27. https://www.microsoft.com/en-us/digitalliteracy/home

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulmira Bekmanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekmanova, G., Ongarbayev, Y. (2020). Flexible Model for Organizing Blended and Distance Learning. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics