Model of Intelligent Massive Open Online Course Development | SpringerLink
Skip to main content

Model of Intelligent Massive Open Online Course Development

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Abstract

The relevance of development and extension of massive open online courses (MOOC) got a new wave of development due to the coronavirus pandemic. The importance and necessity of MOOCs will be increasing, however, intelligent systems changed qualitatively since the development of first MOOCs. The intelligent MOOC development with using Kazakh language thesaurus approach is suggested in this paper. The model of intelligent MOOC suggests laying its intellectuality at its designing, using the knowledge base, ontological model of discipline, and their relevant question-answer system and intelligent search. The separate important part of each such MOOC is the intelligent assessment of knowledge and achievement of training’s announced results. The suggested MOOC model makes it more effective means for distance, blended and any e-learning. The intelligent MOOC possesses a possibility of its using in e-learning systems without a tutor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belanger, Y., Thornton, J.: Bioelectricity: A quantitative approach Duke University’s first MOOC (2013)

    Google Scholar 

  2. Haggard, S.: The maturing of the MOOC. Department for Business Innovation & Skills (2013)

    Google Scholar 

  3. Chuang, I., Ho, A.: HarvardX and MITx: Four Years of Open Online Courses – Fall 2012-Summer 2016 (2016)

    Google Scholar 

  4. https://www.vedomosti.ru/management/articles/2020/04/08/827543-onlainovie-kursi

  5. https://xn–80aesfpebagmfblc0a.xn–p1ai/news/20200413-1847.html

    Google Scholar 

  6. https://1prof.by/news/stil-zhizni/attrakcion-shhedrosti-iz-za-koronavirusa-mnogie-servisy-stali-besplatnymi/

  7. https://edmarket.ru/blog/top-trends-of-e-learning

  8. Chen, Y.: A study of implementing and evaluating an interactive video on demand. New Educ. Rev. 28(2), 115–125 (2012)

    Google Scholar 

  9. Hillen, S., Landis, M.: Two perspectives on e-learning design: a synopsis of a U.S. and a European analysis. Int. Rev. Res. Open Dist. Learn. 15(4), 199–225 (2014)

    Google Scholar 

  10. Sharipbay, A., Barlybayev, A., Sabyrov, T.: Measure the usability of graphical user interface. New Advances in Information Systems and Technologies. AISC, vol. 444, pp. 1037–1045. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31232-3_98

    Chapter  Google Scholar 

  11. Sharipbay, A., Omarbekova, A., Seifullina, A., Zakirova, A.: Creating intelligent electronic textbooks based on knowledge management. In: The World Congress on Engineering 2014, vol. 1, pp. 224–227 (2014)

    Google Scholar 

  12. Sharipbay, A., Omarbekova, A., Nurgazinova, G.: Creating intelligent electronic textbooks in Kazakhstan. In: 6th International Conference on Education and New Learning Technologies. Barcelona/Spain, pp. 2926–2933 (2014)

    Google Scholar 

  13. Nurgazinova, G., Golenkov, V., Sharipbay, A., Omarbekova, A., Barlybayev, A.: Designing of intelligent reference system for algebra based on the knowledge database. In: International Conference on Control, Automation and Artificial Intelligence, pp. 230–235 (2015)

    Google Scholar 

  14. Pillutla, V.S., Tawfik, A.A., Giabbanelli, P.J.: Detecting the depth and progression of learning in massive open online courses by mining discussion data. Technol. Knowl. Learn. (2020). https://doi.org/10.1007/s10758-020-09434-w

  15. Soltani, M., Zarzour, H., Babahenini, M.C., Chemam, C.: An affective tutoring system for massive open online courses. In: Bouhlel, M.S., Rovetta, S. (eds.) SETIT 2018. SIST, vol. 146, pp. 202–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21005-2_20

    Chapter  Google Scholar 

  16. Alrajhi, L., Alharbi, K., Cristea, A.I.: A multidimensional deep learner model of urgent instructor intervention need in MOOC forum posts (2020). https://doi.org/10.1007/978-3-030-49663-0_27

  17. Yergesh, B., Mukanova, A., Sharipbay, A., Bekmanova, G., Razakhova, B.: Semantic hyper-graph based representation of nouns in the Kazakh language. Computacion y Sistemas 18(3), 627–635 (2014)

    Google Scholar 

  18. Bekmanova, G., Sharipbay, A., Omarbekova, A., Yelibayeva, G., Yergesh, B.: Adequate assessment of the customers actual reviews through comparing them with the fake ones. In: Proceedings of 2017 International Conference on Engineering and Technology, pp. 1–4 (2018)

    Google Scholar 

  19. Mukanova, A., Yergesh, B., Bekmanova, G., Razakhova, B., Sharipbay, A.: Formal models of nouns in the Kazakh language. Leonardo Electron. J. Pract. Technol. 13(25), 264–273 (2014)

    Google Scholar 

  20. Bazarova, M., Zhomartkyzy, G.: Ontological model of professional competences for ICT-specilaists 6D070300. Vestnik KazNITU. №1 (119), pp. 321–328 (2017)

    Google Scholar 

  21. Bazarova, M., Zhomartkyzy, G., Wojcik, W., Krak, Yu.: Construction of individual trajectories of training specialists in the field of information and communication technologies. J. Autom. Inf. Sci. 49(10), 36–46 (2017)

    Article  Google Scholar 

  22. Liu, BL., Hu, B., Wang, XY., Zheng, L.: A RDF-based knowledgebase implementation for E-learning. New Horizon in Web-based Learning. In: 3rd International Conference on Web-Based Learning, pp. 45–50 (2004)

    Google Scholar 

  23. Wang, L., Zhang, Yu., Liu, T.: A deep learning approach for question answering over knowledge base. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC 2016. LNCS (LNAI), vol. 10102, pp. 885–892. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_82

    Chapter  Google Scholar 

  24. Omarbekova, A., Sharipbay, A., Barlybaev, B.: Generation of test questions from RDF files using PYTHON and SPARQL. J. Phys. Conf. Ser. 806(1), 012009 (2017)

    Google Scholar 

  25. Omarbekova, A., Nurgazinova, G., Sharipbay, A., Barlybayev, A., Bekmanova, G.: Automatic formation of questions and answers on the basis of the knowledge base. Paper presented at the Proceedings of 2017 International Conference on Engineering and Technology (2018)

    Google Scholar 

  26. Yelibayeva, G., Mukanova, A., Sharipbay, A., Zulkhazhav, A., Yergesh, B., Bekmanova, G.: Metalanguage and knowledgebase for Kazakh morphology. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11619, pp. 693–706. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_51

    Chapter  Google Scholar 

  27. https://protege.stanford.edu/

  28. Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-based sentiment analysis of kazakh sentences. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10406, pp. 669–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_47

    Chapter  Google Scholar 

  29. Sharipbayev, A., Bekmanova, G., Yergesh, B., Mukanova, A., Buribayeva, A.: Semantic retrieval of information in the Kazakh language in elibraries. J. Int. Sci. Pub. Educ. Alter. 10, part 1, 108–115. (2014)

    Google Scholar 

  30. Zulfiya, K., Gulmira, B., Altynbek, S.: Ontological model for student’s knowledge assessment. Paper presented at the ACM International Conference Proceeding Series (2019)

    Google Scholar 

  31. Zulfiya, K., Gulmira, B., Altynbek, S., Assel, O.: A model and a method for assessing students’ competencies in e-learning system. Paper presented at the ACM International Conference Proceeding Series (2019)

    Google Scholar 

  32. Barlybayev, A., Kaderkeyeva, Z., Bekmanova, G., Sharipbay, A., Omarbekova, A., Altynbek, S.: Intelligent system for evaluating the level of formation of professional competencies of students (2020)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the grant financing for scientific and technical programs and projects by the Ministry of Science and Education of the Republic of Kazakhstan (Grant No. AP05132249, 2018–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulmira Bekmanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekmanova, G., Omarbekova, A., Kaderkeyeva, Z., Sharipbay, A. (2020). Model of Intelligent Massive Open Online Course Development. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12250. Springer, Cham. https://doi.org/10.1007/978-3-030-58802-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58802-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58801-4

  • Online ISBN: 978-3-030-58802-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics