Abstract
We present a new method for vectorization of technical line drawings, such as floor plans, architectural drawings, and 2D CAD images. Our method includes (1) a deep learning-based cleaning stage to eliminate the background and imperfections in the image and fill in missing parts, (2) a transformer-based network to estimate vector primitives, and (3) optimization procedure to obtain the final primitive configurations. We train the networks on synthetic data, renderings of vector line drawings, and manually vectorized scans of line drawings. Our method quantitatively and qualitatively outperforms a number of existing techniques on a collection of representative technical drawings.
V. Egiazarian and O. Voynov—Equal contribution.
A. Artemov—Technical lead.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Open CASCADE Technology OCCT. https://www.opencascade.com/, Accessed 05 March 2005
PrecisionFloorplan. http://precisionfloorplan.com, Accessed 05 March 2020
Bessmeltsev, M., Solomon, J.: Vectorization of line drawings via polyvector fields. ACM Trans. Graph. (TOG) 38(1), 9 (2019)
Chai, D., Forstner, W., Lafarge, F.: Recovering line-networks in images by junction-point processes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1894–1901 (2013)
Chen, J., Du, M., Qin, X., Miao, Y.: An improved topology extraction approach for vectorization of sketchy line drawings. The Visual Comput. 34(12), 1633–1644 (2018). https://doi.org/10.1007/s00371-018-1549-z
Chen, J.Z., Lei, Q., Miao, Y.W., Peng, Q.S.: Vectorization of line drawing image based on junction analysis. Sci. China Inf. Sci. 58(7), 1–14 (2015). https://doi.org/10.1007/s11432-014-5246-x
Chu, H., Wang, S., Urtasun, R., Fidler, S.: HouseCraft: building houses from rental ads and street views. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 500–516. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_30
Delalandre, M., Valveny, E., Pridmore, T., Karatzas, D.: Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems. Int. J. Document Anal. Recogn. (IJDAR) 13(3), 187–207 (2010)
Donati, L., Cesano, S., Prati, A.: A complete hand-drawn sketch vectorization framework. Multimed. Tools Appl. 78(14), 19083–19113 (2019). https://doi.org/10.1007/s11042-019-7311-3
Ellis, K., Ritchie, D., Solar-Lezama, A., Tenenbaum, J.: Learning to infer graphics programs from hand-drawn images. In: Advances in Neural Information Processing Systems. pp. 6059–6068 (2018)
Favreau, J.D., Lafarge, F., Bousseau, A.: Fidelity vs. simplicity: a global approach to line drawing vectorization. ACM Trans. Graph. (TOG) 35(4), 120 (2016)
Gao, J., Tang, C., Ganapathi-Subramanian, V., Huang, J., Su, H., Guibas, L.J.: Deepspline: Data-driven reconstruction of parametric curves and surfaces. arXiv preprint arXiv:1901.03781 (2019)
Guo, Y., Zhang, Z., Han, C., Hu, W.B., Li, C., Wong, T.T.: Deep line drawing vectorization via line subdivision and topology reconstruction. Comput. Graph. Forum 38, 81–90 (2019)
Ha, D., Eck, D.: A neural representation of sketch drawings. arXiv preprint arXiv:1704.03477 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016)
de las Heras, L.-P., Terrades, O.R., Robles, S., Sánchez, G.: CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool. Int. J. Document Anal. Recogn (IJDAR) 18(1), 15–30 (2015). https://doi.org/10.1007/s10032-014-0236-5
Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 6, 890–904 (2006)
Kaiyrbekov, K., Sezgin, M.: Stroke-based sketched symbol reconstruction and segmentation. arXiv preprint arXiv:1901.03427 (2019)
Kansal, R., Kumar, S.: A vectorization framework for constant and linear gradient filled regions. The Visual Comput. 31(5), 717–732 (2014). https://doi.org/10.1007/s00371-014-0997-3
Kanungo, T., Haralick, R.M., Baird, H.S., Stuezle, W., Madigan, D.: A statistical, nonparametric methodology for document degradation model validation. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1209–1223 (2000)
Kim, B., Wang, O., Öztireli, A.C., Gross, M.: Semantic segmentation for line drawing vectorization using neural networks. In: Computer Graphics Forum. vol. 37, pp. 329–338. Wiley Online Library (2018)
Koch, S., et al.: Abc: A big cad model dataset for geometric deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9601–9611 (2019)
Li, C., Liu, X., Wong, T.T.: Deep extraction of manga structural lines. ACM Trans. Graph. (TOG) 36(4), 117 (2017)
Liu, C., Wu, J., Kohli, P., Furukawa, Y.: Raster-to-vector: revisiting floorplan transformation. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2195–2203 (2017)
Liu, C., Schwing, A.G., Kundu, K., Urtasun, R., Fidler, S.: Rent3d: Floor-plan priors for monocular layout estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3413–3421 (2015)
Máttyus, G., Luo, W., Urtasun, R.: Deeproadmapper: Extracting road topology from aerial images. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3438–3446 (2017)
Munusamy Kabilan, V., Morris, B., Nguyen, A.: Vectordefense: Vectorization as a defense to adversarial examples. arXiv preprint arXiv:1804.08529 (2018)
Najgebauer, P., Scherer, R.: Inertia-based fast vectorization of line drawings. Comput. Graph. Forum 38, 203–213 (2019)
Noris, G., Hornung, A., Sumner, R.W., Simmons, M., Gross, M.: Topology-driven vectorization of clean line drawings. ACM Trans. Graph. (TOG) 32(1), 4 (2013)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rusiñol, M., Borràs, A., Lladós, J.: Relational indexing of vectorial primitives for symbol spotting in line-drawing images. Pattern Recogn. Lett. 31(3), 188–201 (2010)
Sasaki, K., Iizuka, S., SimoSerra, E., Ishikawa, H.: Learning to restore deteriorated line drawing. The Visual Comput. 34(6–8), 1077–1085 (2018)
Selinger, P.: Potrace: a polygon-based tracing algorithm. Potrace. http://potrace.sourceforge.net/potrace.pdf (2003)
Sharma, D., Gupta, N., Chattopadhyay, C., Mehta, S.: Daniel: A deep architecture for automatic analysis and retrieval of building floor plans. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). vol. 1, pp. 420–425. IEEE (2017)
Simo-Serra, E., Iizuka, S., Ishikawa, H.: Mastering sketching: adversarial augmentation for structured prediction. ACM Trans. Graph. (TOG) 37(1), 11 (2018)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems. pp. 5998–6008 (2017)
Zhao, J., Feng, J., Zhou, B.: Image vectorization using blue-noise sampling. In: Imaging and Printing in a Web 2.0 World IV International Society for Optics and Photonics. vol. 8664, p. 86640H (2013)
Zheng, N., Jiang, Y., Huang, D.: Strokenet: Aneural painting environment. In: International Conference on Learning Representations (2018)
Zhou, T., et al.: Learning to doodle with stroke demonstrations and deep q-networks. In: BMVC. p. 13 (2018)
Acknowledgements
We thank Milena Gazdieva and Natalia Soboleva for their valuable contributions in preparing real-world raster and vector datasets, as well as Maria Kolos and Alexey Bokhovkin for contributing parts of shared codebase used throughout this project. We acknowledge the usage of Skoltech CDISE HPC cluster Zhores for obtaining the presented results. The work was partially supported by Russian Science Foundation under Grant 19–41-04109.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Egiazarian, V. et al. (2020). Deep Vectorization of Technical Drawings. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-58601-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58600-3
Online ISBN: 978-3-030-58601-0
eBook Packages: Computer ScienceComputer Science (R0)