Webly Supervised Image Classification with Self-contained Confidence | SpringerLink
Skip to main content

Webly Supervised Image Classification with Self-contained Confidence

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12353))

Included in the following conference series:

Abstract

This paper focuses on webly supervised learning (WSL), where datasets are built by crawling samples from the Internet and directly using search queries as web labels. Although WSL benefits from fast and low-cost data collection, noises in web labels hinder better performance of the image classification model. To alleviate this problem, in recent works, self-label supervised loss \(\mathcal {L}_s\) is utilized together with webly supervised loss \(\mathcal {L}_w\). \(\mathcal {L}_s\) relies on pseudo labels predicted by the model itself. Since the correctness of the web label or pseudo label is usually on a case-by-case basis for each web sample, it is desirable to adjust the balance between \(\mathcal {L}_s\) and \(\mathcal {L}_w\) on sample level. Inspired by the ability of Deep Neural Networks (DNNs) in confidence prediction, we introduce Self-Contained Confidence (SCC) by adapting model uncertainty for WSL setting, and use it to sample-wisely balance \(\mathcal {L}_s\) and \(\mathcal {L}_w\). Therefore, a simple yet effective WSL framework is proposed. A series of SCC-friendly regularization approaches are investigated, among which the proposed graph-enhanced mixup is the most effective method to provide high-quality confidence to enhance our framework. The proposed WSL framework has achieved the state-of-the-art results on two large-scale WSL datasets, WebVision-1000 and Food101-N. Code is available at https://github.com/bigvideoresearch/SCC.

J. Yang and W. Chen—Work done during an internship at SenseTime EIG Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Web label confidence and self-contained confidence are used interchangeably throughout the paper.

References

  1. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: Mixmatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)

    Google Scholar 

  2. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  4. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  5. Gal, Y.: Uncertainty in deep learning. Univ. Camb. 1( 3) (2016)

    Google Scholar 

  6. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: ICML, pp. 1050–1059 (2016)

    Google Scholar 

  7. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML, pp. 1321–1330 (2017)

    Google Scholar 

  8. Guo, S., et al.: Curriculumnet: weakly supervised learning from large-scale web images. In: ECCV, pp. 135–150. Springer (2018)

    Google Scholar 

  9. Han, J., Luo, P., Wang, X.: Deep self-learning from noisy labels. In: ICCV, pp. 5138–5147 (2019)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: CVPR, pp. 558–567 (2019)

    Google Scholar 

  12. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: AugMix: a simple data processing method to improve robustness and uncertainty. In: ICLR (2020)

    Google Scholar 

  13. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  14. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: ICML, pp. 2304–2313 (2018)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  16. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS, pp. 6402–6413 (2017)

    Google Scholar 

  17. Lee, K.H., He, X., Zhang, L., Yang, L.: Cleannet: transfer learning for scalable image classifier training with label noise. In: CVPR, pp. 5447–5456 (2018)

    Google Scholar 

  18. Li, Q., Peng, X., Cao, L., Du, W., Xing, H., Qiao, Y.: Product image recognition with guidance learning and noisy supervision. arXiv preprint arXiv:1907.11384 (2019)

  19. Li, W., Wang, L., Li, W., Agustsson, E., Van Gool, L.: Webvision database: visual learning and understanding from web data. arXiv preprint arXiv:1708.02862 (2017)

  20. Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12

    Chapter  Google Scholar 

  21. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NeurIPS, pp. 4694–4703 (2019)

    Google Scholar 

  22. Ovadia, Y., et al.: Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. In: NeurIPS, pp. 13991–14002 (2019)

    Google Scholar 

  23. Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In: CVPR, pp. 1944–1952 (2017)

    Google Scholar 

  24. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548 (2017)

  25. Radosavovic, I., Dollár, P., Girshick, R., Gkioxari, G., He, K.: Data distillation: towards omni-supervised learning. In: CVPR, pp. 4119–4128 (2018)

    Google Scholar 

  26. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. In: ICLR (2015)

    Google Scholar 

  27. Shah, M., et al.: Inferring context from pixels for multimodal image classification. In: CIKM, pp. 189–198. ACM (2019)

    Google Scholar 

  28. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS, pp. 4077–4087 (2017)

    Google Scholar 

  29. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: ICCV, pp. 843–852 (2017)

    Google Scholar 

  30. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: CVPR, pp. 1891–1898 (2014)

    Google Scholar 

  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  32. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: CVPR, pp. 5552–5560 (2018)

    Google Scholar 

  33. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On mixup training: improved calibration and predictive uncertainty for deep neural networks. In: NeurIPS, pp. 13888–13899 (2019)

    Google Scholar 

  34. Tu, Y., Niu, L., Chen, J., Cheng, D., Zhang, L.: Learning from web data with self-organizing memory module. In: CVPR, pp. 12846–12855 (2020)

    Google Scholar 

  35. Xia, X., et al.: Are anchor points really indispensable in label-noise learning? In: NeurIPS, pp. 6838–6849 (2019)

    Google Scholar 

  36. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848 (2019)

  37. Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546 (2019)

  38. Yu, X., Liu, T., Gong, M., Batmanghelich, K., Tao, D.: An efficient and provable approach for mixture proportion estimation using linear independence assumption. In: CVPR, pp. 4480–4489 (2018)

    Google Scholar 

  39. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  40. Zhang, W., Wang, Y., Qiao, Y.: Metacleaner: Learning to hallucinate clean representations for noisy-labeled visual recognition. In: CVPR, pp. 7373–7382 (2019)

    Google Scholar 

  41. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. In: TPAMI (2017)

    Google Scholar 

  42. Zhu, X.J.: Semi-supervised learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Technical report (2005)

    Google Scholar 

Download references

Acknowledgement

The work described in this paper was partially supported by Innovation and Technology Commission of the Hong Kong Special Administrative Region, China (Enterprise Support Scheme under the Innovation and Technology Fund B/E030/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkang Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 134 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, J. et al. (2020). Webly Supervised Image Classification with Self-contained Confidence. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12353. Springer, Cham. https://doi.org/10.1007/978-3-030-58598-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58598-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58597-6

  • Online ISBN: 978-3-030-58598-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics