Abstract
In order to plan a safe maneuver an autonomous vehicle must accurately perceive its environment, and understand the interactions among traffic participants. In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data. In particular, we propose to characterize the joint distribution over future trajectories via an implicit latent variable model. We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene. Coupled with a deterministic decoder, we obtain trajectory samples that are consistent across traffic participants, achieving state-of-the-art results in motion forecasting and interaction understanding. Last but not least, we demonstrate that our motion forecasts result in safer and more comfortable motion planning.
S. Casas, C. Gulino and S. Suo—Denotes equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE CVPR (2016)
Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks (2018)
Behbahani, F., et al.: Learning from demonstration in the wild. In: 2019 International Conference on Robotics and Automation (ICRA), May 2019. https://doi.org/10.1109/icra.2019.8794412
Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: Sumo-simulation of urban mobility: an overview. In: Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind (2011)
Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1171–1179 (2015)
Best, A., Narang, S., Pasqualin, L., Barber, D., Manocha, D.: AutonoVi-Sim: autonomous vehicle simulation platform with weather, sensing, and traffic control. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1161–11618 (2018)
Bhattacharyya, R.P., Phillips, D.J., Wulfe, B., Morton, J., Kuefler, A., Kochenderfer, M.J.: Multi-agent imitation learning for driving simulation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018. https://doi.org/10.1109/iros.2018.8593758
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)
Casas, S., Gulino, C., Liao, R., Urtasun, R.: Spatially-aware graph neural networks for relational behavior forecasting from sensor data. arXiv preprint arXiv:1910.08233 (2019)
Casas, S., Luo, W., Urtasun, R.: IntentNet: learning to predict intention from raw sensor data. In: Conference on Robot Learning (2018)
Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449 (2019)
Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. arXiv preprint arXiv:1809.10732 (2018)
Djuric, N., et al.: Motion prediction of traffic actors for autonomous driving using deep convolutional networks. arXiv preprint arXiv:1808.05819 (2018)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)
Hardy, J., Campbell, M.: Contingency planning over probabilistic obstacle predictions for autonomous road vehicles. IEEE Trans. Robot. 29, 913–929 (2013)
Henaff, M., Canziani, A., LeCun, Y.: Model-predictive policy learning with uncertainty regularization for driving in dense traffic. arXiv preprint arXiv:1901.02705 (2019)
Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework
Hong, J., Sapp, B., Philbin, J.: Rules of the road: predicting driving behavior with a convolutional model of semantic interactions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Hoshen, Y.: VAIN: attentional multi-agent predictive modeling. In: Advances in Neural Information Processing Systems, pp. 2701–2711 (2017)
Hubmann, C., Schulz, J., Becker, M., Althoff, D., Stiller, C.: Automated driving in uncertain environments: planning with interaction and uncertain maneuver prediction. IEEE Trans. Intell. Veh. 3(1), 5–17 (2018)
Huszár, F.: How (not) to train your generative model: Scheduled sampling, likelihood, adversary? arXiv preprint arXiv:1511.05101 (2015)
Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2375–2384 (2019)
Jain, A., Casas, S., Liao, R., Xiong, Y., Feng, S., Segal, S., Urtasun, R.: Discrete residual flow for probabilistic pedestrian behavior prediction. arXiv preprint arXiv:1910.08041 (2019)
Kim, B., Kang, C.M., Kim, J., Lee, S.H., Chung, C.C., Choi, J.W.: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 399–404. IEEE (2017)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2013)
Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational inference for interacting systems. arXiv preprint arXiv:1802.04687 (2018)
Klingelschmitt, S., Damerow, F., Eggert, J.: Managing the complexity of inner-city scenes: an efficient situation hypotheses selection scheme. In: 2015 IEEE intelligent vehicles symposium (IV), pp. 1232–1239. IEEE (2015)
Lamb, A.M., Alias Parth Goyal, A.G., Zhang, Y., Zhang, S., Courville, A.C., Bengio, Y.: Professor forcing: a new algorithm for training recurrent networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf
Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)
Le, H.M., Yue, Y., Carr, P., Lucey, P.: Coordinated multi-agent imitation learning (2017)
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE CVPR (2017)
Li, L., Yang, B., Liang, M., Zeng, W., Ren, M., Segal, S., Urtasun, R.: End-to-end contextual perception and prediction with interaction transformer. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)
Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: Proceedings of the IEEE CVPR (2019)
Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning lane graph representations for motion forecasting. In: ECCV (2020)
Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: Proceedings of the IEEE CVPR (2018)
Ma, J., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 20, 3111–3122 (2018)
Ma, W.C., Huang, D.A., Lee, N., Kitani, K.M.: Forecasting interactive dynamics of pedestrians with fictitious play. In: Proceedings of the IEEE CVPR (2017)
Martinez, M., Sitawarin, C., Finch, K., Meincke, L., Yablonski, A., Kornhauser, A.: Beyond grand theft auto V for training, testing and enhancing deep learning in self driving cars (2017)
Okamoto, M., Perona, P., Khiat, A.: DDT: deep driving tree for proactive planning in interactive scenarios. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 656–661. IEEE (2018)
Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J., et al.: An algorithmic perspective on imitation learning. Found. Trends® Rob. (2018)
Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. arXiv preprint arXiv:1911.10298 (2019)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE CVPR (2017)
Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 729–736 (2006)
Rhinehart, N., Kitani, K.M., Vernaza, P.: r2p2: a ReparameteRized pushforward policy for diverse, precise generative path forecasting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 794–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_47
Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: PRECOG: PREdiction conditioned on goals in visual multi-agent settings. arXiv e-prints arXiv:1905.01296, May 2019
Ridel, D., Deo, N., Wolf, D., Trivedi, M.: Scene compliant trajectory forecast with agent-centric spatio-temporal grids. IEEE Robot. Autom. Lett. 5, 2816–2823 (2020)
Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence And Statistics, pp. 627–635 (2011)
Sadat, A., Ren, M., Pokrovsky, A., Lin, Y.C., Yumer, E., Urtasun, R.: Jointly learnable behavior and trajectory planning for self-driving vehicles. arXiv preprint arXiv:1910.04586 (2019)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)
Tang, C., Salakhutdinov, R.R.: Multiple futures prediction. In: Advances in Neural Information Processing Systems, pp. 15398–15408 (2019)
Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805 (2000)
Yang, B., Guo, R., Liang, M., Sergio, C., Urtasun, R.: Exploiting radar for robust perception of dynamic objects. In: ECCV (2020)
Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3D object detection from point clouds. In: Proceedings of the IEEE CVPR (2018)
Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., Urtasun, R.: End-to-end interpretable neural motion planner. In: Proceedings of the IEEE CVPR (2019)
Zeng, W., Wang, S., Liao, R., Chen, Y., Yang, B., Urtasun, R.: DSDNet: deep structured self-driving network. In: ECCV (2020)
Zhou, Y., et al.: End-to-end multi-view fusion for 3D object detection in lidar point clouds. arXiv preprint arXiv:1910.06528 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 24367 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., Urtasun, R. (2020). Implicit Latent Variable Model for Scene-Consistent Motion Forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-58592-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58591-4
Online ISBN: 978-3-030-58592-1
eBook Packages: Computer ScienceComputer Science (R0)