Implicit Latent Variable Model for Scene-Consistent Motion Forecasting | SpringerLink
Skip to main content

Implicit Latent Variable Model for Scene-Consistent Motion Forecasting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

Abstract

In order to plan a safe maneuver an autonomous vehicle must accurately perceive its environment, and understand the interactions among traffic participants. In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data. In particular, we propose to characterize the joint distribution over future trajectories via an implicit latent variable model. We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene. Coupled with a deterministic decoder, we obtain trajectory samples that are consistent across traffic participants, achieving state-of-the-art results in motion forecasting and interaction understanding. Last but not least, we demonstrate that our motion forecasts result in safer and more comfortable motion planning.

S. Casas, C. Gulino and S. Suo—Denotes equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE CVPR (2016)

    Google Scholar 

  2. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks (2018)

    Google Scholar 

  3. Behbahani, F., et al.: Learning from demonstration in the wild. In: 2019 International Conference on Robotics and Automation (ICRA), May 2019. https://doi.org/10.1109/icra.2019.8794412

  4. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: Sumo-simulation of urban mobility: an overview. In: Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind (2011)

    Google Scholar 

  5. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1171–1179 (2015)

    Google Scholar 

  6. Best, A., Narang, S., Pasqualin, L., Barber, D., Manocha, D.: AutonoVi-Sim: autonomous vehicle simulation platform with weather, sensing, and traffic control. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1161–11618 (2018)

    Google Scholar 

  7. Bhattacharyya, R.P., Phillips, D.J., Wulfe, B., Morton, J., Kuefler, A., Kochenderfer, M.J.: Multi-agent imitation learning for driving simulation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2018. https://doi.org/10.1109/iros.2018.8593758

  8. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027 (2019)

  9. Casas, S., Gulino, C., Liao, R., Urtasun, R.: Spatially-aware graph neural networks for relational behavior forecasting from sensor data. arXiv preprint arXiv:1910.08233 (2019)

  10. Casas, S., Luo, W., Urtasun, R.: IntentNet: learning to predict intention from raw sensor data. In: Conference on Robot Learning (2018)

    Google Scholar 

  11. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449 (2019)

  12. Cui, H., et al.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. arXiv preprint arXiv:1809.10732 (2018)

  13. Djuric, N., et al.: Motion prediction of traffic actors for autonomous driving using deep convolutional networks. arXiv preprint arXiv:1808.05819 (2018)

  14. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  15. Hardy, J., Campbell, M.: Contingency planning over probabilistic obstacle predictions for autonomous road vehicles. IEEE Trans. Robot. 29, 913–929 (2013)

    Article  Google Scholar 

  16. Henaff, M., Canziani, A., LeCun, Y.: Model-predictive policy learning with uncertainty regularization for driving in dense traffic. arXiv preprint arXiv:1901.02705 (2019)

  17. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework

    Google Scholar 

  18. Hong, J., Sapp, B., Philbin, J.: Rules of the road: predicting driving behavior with a convolutional model of semantic interactions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  19. Hoshen, Y.: VAIN: attentional multi-agent predictive modeling. In: Advances in Neural Information Processing Systems, pp. 2701–2711 (2017)

    Google Scholar 

  20. Hubmann, C., Schulz, J., Becker, M., Althoff, D., Stiller, C.: Automated driving in uncertain environments: planning with interaction and uncertain maneuver prediction. IEEE Trans. Intell. Veh. 3(1), 5–17 (2018)

    Article  Google Scholar 

  21. Huszár, F.: How (not) to train your generative model: Scheduled sampling, likelihood, adversary? arXiv preprint arXiv:1511.05101 (2015)

  22. Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2375–2384 (2019)

    Google Scholar 

  23. Jain, A., Casas, S., Liao, R., Xiong, Y., Feng, S., Segal, S., Urtasun, R.: Discrete residual flow for probabilistic pedestrian behavior prediction. arXiv preprint arXiv:1910.08041 (2019)

  24. Kim, B., Kang, C.M., Kim, J., Lee, S.H., Chung, C.C., Choi, J.W.: Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 399–404. IEEE (2017)

    Google Scholar 

  25. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2013)

    Google Scholar 

  26. Kipf, T., Fetaya, E., Wang, K.C., Welling, M., Zemel, R.: Neural relational inference for interacting systems. arXiv preprint arXiv:1802.04687 (2018)

  27. Klingelschmitt, S., Damerow, F., Eggert, J.: Managing the complexity of inner-city scenes: an efficient situation hypotheses selection scheme. In: 2015 IEEE intelligent vehicles symposium (IV), pp. 1232–1239. IEEE (2015)

    Google Scholar 

  28. Lamb, A.M., Alias Parth Goyal, A.G., Zhang, Y., Zhang, S., Courville, A.C., Bengio, Y.: Professor forcing: a new algorithm for training recurrent networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks.pdf

  29. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019)

    Google Scholar 

  30. Le, H.M., Yue, Y., Carr, P., Lucey, P.: Coordinated multi-agent imitation learning (2017)

    Google Scholar 

  31. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE CVPR (2017)

    Google Scholar 

  32. Li, L., Yang, B., Liang, M., Zeng, W., Ren, M., Segal, S., Urtasun, R.: End-to-end contextual perception and prediction with interaction transformer. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)

    Google Scholar 

  33. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: Proceedings of the IEEE CVPR (2019)

    Google Scholar 

  34. Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning lane graph representations for motion forecasting. In: ECCV (2020)

    Google Scholar 

  35. Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: Proceedings of the IEEE CVPR (2018)

    Google Scholar 

  36. Ma, J., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 20, 3111–3122 (2018)

    Article  Google Scholar 

  37. Ma, W.C., Huang, D.A., Lee, N., Kitani, K.M.: Forecasting interactive dynamics of pedestrians with fictitious play. In: Proceedings of the IEEE CVPR (2017)

    Google Scholar 

  38. Martinez, M., Sitawarin, C., Finch, K., Meincke, L., Yablonski, A., Kornhauser, A.: Beyond grand theft auto V for training, testing and enhancing deep learning in self driving cars (2017)

    Google Scholar 

  39. Okamoto, M., Perona, P., Khiat, A.: DDT: deep driving tree for proactive planning in interactive scenarios. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 656–661. IEEE (2018)

    Google Scholar 

  40. Osa, T., Pajarinen, J., Neumann, G., Bagnell, J.A., Abbeel, P., Peters, J., et al.: An algorithmic perspective on imitation learning. Found. Trends® Rob. (2018)

    Google Scholar 

  41. Phan-Minh, T., Grigore, E.C., Boulton, F.A., Beijbom, O., Wolff, E.M.: CoverNet: multimodal behavior prediction using trajectory sets. arXiv preprint arXiv:1911.10298 (2019)

  42. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE CVPR (2017)

    Google Scholar 

  43. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 729–736 (2006)

    Google Scholar 

  44. Rhinehart, N., Kitani, K.M., Vernaza, P.: r2p2: a ReparameteRized pushforward policy for diverse, precise generative path forecasting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 794–811. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_47

    Chapter  Google Scholar 

  45. Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: PRECOG: PREdiction conditioned on goals in visual multi-agent settings. arXiv e-prints arXiv:1905.01296, May 2019

  46. Ridel, D., Deo, N., Wolf, D., Trivedi, M.: Scene compliant trajectory forecast with agent-centric spatio-temporal grids. IEEE Robot. Autom. Lett. 5, 2816–2823 (2020)

    Article  Google Scholar 

  47. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured prediction to no-regret online learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence And Statistics, pp. 627–635 (2011)

    Google Scholar 

  48. Sadat, A., Ren, M., Pokrovsky, A., Lin, Y.C., Yumer, E., Urtasun, R.: Jointly learnable behavior and trajectory planning for self-driving vehicles. arXiv preprint arXiv:1910.04586 (2019)

  49. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)

    Google Scholar 

  50. Tang, C., Salakhutdinov, R.R.: Multiple futures prediction. In: Advances in Neural Information Processing Systems, pp. 15398–15408 (2019)

    Google Scholar 

  51. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805 (2000)

    Article  Google Scholar 

  52. Yang, B., Guo, R., Liang, M., Sergio, C., Urtasun, R.: Exploiting radar for robust perception of dynamic objects. In: ECCV (2020)

    Google Scholar 

  53. Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3D object detection from point clouds. In: Proceedings of the IEEE CVPR (2018)

    Google Scholar 

  54. Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., Urtasun, R.: End-to-end interpretable neural motion planner. In: Proceedings of the IEEE CVPR (2019)

    Google Scholar 

  55. Zeng, W., Wang, S., Liao, R., Chen, Y., Yang, B., Urtasun, R.: DSDNet: deep structured self-driving network. In: ECCV (2020)

    Google Scholar 

  56. Zhou, Y., et al.: End-to-end multi-view fusion for 3D object detection in lidar point clouds. arXiv preprint arXiv:1910.06528 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Suo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 29546 KB)

Supplementary material 2 (mp4 24367 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., Urtasun, R. (2020). Implicit Latent Variable Model for Scene-Consistent Motion Forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics