Dense RepPoints: Representing Visual Objects with Dense Point Sets | SpringerLink
Skip to main content

Dense RepPoints: Representing Visual Objects with Dense Point Sets

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12366))

Included in the following conference series:

Abstract

We present a new object representation, called Dense RepPoints, that utilizes a large set of points to describe an object at multiple levels, including both box level and pixel level. Techniques are proposed to efficiently process these dense points, maintaining near-constant complexity with increasing point numbers. Dense RepPoints is shown to represent and learn object segments well, with the use of a novel distance transform sampling method combined with set-to-set supervision. The distance transform sampling combines the strengths of contour and grid representations, leading to performance that surpasses counterparts based on contours or grids. Code is available at https://github.com/justimyhxu/Dense-RepPoints.

Z. Yang, Y. Xu and H. Xue—Equal contribution.

This work was done when Ze Yang, Yinghao Xu and Han Xue were interns at Microsoft Research Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of segmentation datasets with polygon-RNN++ (2018)

    Google Scholar 

  2. Alp Güler, R., Neverova, N., Kokkinos, I.: DensePose: dense human pose estimation in the wild. In: CVPR, pp. 7297–7306 (2018)

    Google Scholar 

  3. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR, pp. 7291–7299 (2017)

    Google Scholar 

  4. Castrejon, L., Kundu, K., Urtasun, R., Fidler, S.: Annotating object instances with a polygon-RNN. In: CVPR, pp. 5230–5238 (2017)

    Google Scholar 

  5. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  Google Scholar 

  6. Chen, L.C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLAB: instance segmentation by refining object detection with semantic and direction features. In: CVPR, pp. 4013–4022 (2018)

    Google Scholar 

  7. Chen, X., Girshick, R.B., He, K., Dollár, P.: TensorMask: a foundation for dense object segmentation. In: ICCV (2019)

    Google Scholar 

  8. Cheng, D., Liao, R., Fidler, S., Urtasun, R.: Darnet: Deep active ray network for building segmentatio. arXiv preprint arXiv:1905.05889 (2019)

  9. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  10. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR, pp. 3150–3158 (2016)

    Google Scholar 

  11. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: NeurIPS, pp. 379–387 (2016)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database (2009)

    Google Scholar 

  13. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: object detection with keypoint triplets. arXiv preprint arXiv:1904.08189 (2019)

  14. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  15. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  16. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  17. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  20. Huang, C., Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview face detection. PAMI 29(4), 671–686 (2007)

    Article  Google Scholar 

  21. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. IJCV 1(4), 321–331 (1988)

    Article  Google Scholar 

  22. Kirillov, A., Levinkov, E., Andres, B., Savchynskyy, B., Rother, C.: InstanceCut: from edges to instances with multicut. In: CVPR, pp. 5008–5017 (2017)

    Google Scholar 

  23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS, pp. 1097–1105 (2012)

    Google Scholar 

  24. Kuznetsova, A., et al.: The open images dataset V4: unified image classification, object detection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982 (2018)

  25. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  26. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: CVPR, pp. 2359–2367 (2017)

    Google Scholar 

  27. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: ICCV, pp. 2117–2125 (2017)

    Google Scholar 

  28. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  29. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  30. Ling, H., Gao, J., Kar, A., Chen, W., Fidler, S.: Fast interactive object annotation with curve-GCN. In: CVPR (2019)

    Google Scholar 

  31. Moreira, A., Santos, M.Y.: Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points (2007)

    Google Scholar 

  32. Palmer, S.E.: Vision Science: Photons to Phenomenology. MIT Press, Cambridge (1999)

    Google Scholar 

  33. Peng, S., Jiang, W., Pi, H., Bao, H., Zhou, X.: Deep snake for real-time instance segmentation. arXiv preprint arXiv:2001.01629 (2020)

  34. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  35. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS, pp. 5099–5108 (2017)

    Google Scholar 

  36. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, pp. 91–99 (2015)

    Google Scholar 

  37. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. IJCV 40(2), 99–121 (2000)

    Article  Google Scholar 

  38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  39. Srinivasan, P., Zhu, Q., Shi, J.: Many-to-one contour matching for describing and discriminating object shape. In: CVPR (2010)

    Google Scholar 

  40. Toshev, A., Taskar, B., Daniilidis, K.: Shape-based object detection via boundary structure segmentation. IJCV 99(2), 123–146 (2012)

    Article  MathSciNet  Google Scholar 

  41. Wang, X., Bai, X., Ma, T., Liu, W., Latecki, L.J.: Fan shape model for object detection. In: CVPR, pp. 151–158. IEEE (2012)

    Google Scholar 

  42. Wang, X., Kong, T., Shen, C., Jiang, Y., Li, L.: Solo: segmenting objects by locations. arXiv preprint arXiv:1912.04488 (2019)

  43. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR (2016)

    Google Scholar 

  44. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  45. Xie, E., et al.: PolarMask: single shot instance segmentation with polar representation. arXiv preprint arXiv:1909.13226 (2019)

  46. Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: CVPR, pp. 193–202 (2016)

    Google Scholar 

  47. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: RepPoints: point set representation for object detection. In: CVPR (2019)

    Google Scholar 

  48. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. arXiv preprint arXiv:1912.02424 (2019)

  49. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  50. Zhou, X., Zhuo, J., Krähenbühl, P.: Bottom-up object detection by grouping extreme and center points. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgement

We thank Jifeng Dai and Bolei Zhou for discussion and comments about this work. Jifeng Dai was involved in early discussions of the work and gave up authorship after he joined another company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 677 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z. et al. (2020). Dense RepPoints: Representing Visual Objects with Dense Point Sets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12366. Springer, Cham. https://doi.org/10.1007/978-3-030-58589-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58589-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58588-4

  • Online ISBN: 978-3-030-58589-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics