Abstract
Remote heart rate estimation is the measurement of heart rate without any physical contact with the subject and is accomplished using remote photoplethysmography (rPPG) in this work. rPPG signals are usually collected using a video camera with a limitation of being sensitive to multiple contributing factors, e.g. variation in skin tone, lighting condition and facial structure. End-to-end supervised learning approach performs well when training data is abundant, covering a distribution that doesn’t deviate too much from the distribution of testing data or during deployment. To cope with the unforeseeable distributional changes during deployment, we propose a transductive meta-learner that takes unlabeled samples during testing (deployment) for a self-supervised weight adjustment (also known as transductive inference), providing fast adaptation to the distributional changes. Using this approach, we achieve state-of-the-art performance on MAHNOB-HCI and UBFC-rPPG.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balakrishnan, G., Durand, F., Guttag, J.: Detecting pulse from head motions in video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3430–3437 (2013)
Bengio, Y., et al.: A meta-transfer objective for learning to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912 (2019)
Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2019)
Bousefsaf, F., Pruski, A., Maaoui, C.: 3D convolutional neural networks for remote pulse rate measurement and mapping from facial video. Appl. Sci. 9(20), 4364 (2019)
Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)
Cao, W., Mirjalili, V., Raschka, S.: Rank-consistent ordinal regression for neural networks. arXiv preprint arXiv:1901.07884 (2019)
Cennini, G., Arguel, J., Akşit, K., van Leest, A.: Heart rate monitoring via remote photoplethysmography with motion artifacts reduction. Opt. Express 18(5), 4867–4875 (2010)
Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)
De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)
Digiglio, P., Li, R., Wang, W., Pan, T.: Microflotronic arterial tonometry for continuous wearable non-invasive hemodynamic monitoring. Ann. Biomed. Eng. 42(11), 2278–2288 (2014)
Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Advances in Neural Information Processing Systems, pp. 6450–6461 (2019)
Doyle, O.M., et al.: Predicting progression of Alzheimer’s disease using ordinal regression. PloS One 9(8) (2014)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1126–1135 (2017). JMLR.org
Finn, C., Rajeswaran, A., Kakade, S., Levine, S.: Online meta-learning. arXiv preprint arXiv:1902.08438 (2019)
Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375 (2018)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hu, S.X., et al.: Empirical Bayes transductive meta-learning with synthetic gradients. In: International Conference on Learning Representations (ICLR) (2020). https://openreview.net/forum?id=Hkg-xgrYvH
Jaderberg, M., et al.: Decoupled neural interfaces using synthetic gradients. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1627–1635 (2017). JMLR.org
Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)
Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)
Lee, E., Hsu, T.J., Lee, C.Y.: Centralized state sensing using sensor array on wearable device. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)
Li, X., et al.: The OBF database: a large face video database for remote physiological signal measurement and atrial fibrillation detection. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 242–249. IEEE (2018)
Li, X., Chen, J., Zhao, G., Pietikainen, M.: Remote heart rate measurement from face videos under realistic situations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4264–4271 (2014)
Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)
Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. arXiv preprint arXiv:1805.10002 (2018)
Maeda, Y., Sekine, M., Tamura, T.: The advantages of wearable green reflected photoplethysmography. J. Med. Syst. 35(5), 829–834 (2011)
Menikdiwela, M., Nguyen, C., Li, H., Shaw, M.: CNN-based small object detection and visualization with feature activation mapping. In: 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–5. IEEE (2017)
Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017)
Moço, A.V., Stuijk, S., de Haan, G.: Skin inhomogeneity as a source of error in remote PPG-imaging. Biomed. Opt. Express 7(11), 4718–4733 (2016)
Munkhdalai, T., Yu, H.: Meta networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2554–2563 (2017). JMLR.org
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29
Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)
Niu, X., Han, H., Shan, S., Chen, X.: SynRhythm: learning a deep heart rate estimator from general to specific. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3580–3585. IEEE (2018)
Niu, X., Shan, S., Han, H., Chen, X.: RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation. IEEE Trans. Image Process. (2019)
Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4920–4928 (2016)
Parra, D., Karatzoglou, A., Amatriain, X., Yavuz, I.: Implicit feedback recommendation via implicit-to-explicit ordinal logistic regression mapping. In: Proceedings of the CARS-2011, vol. 5 (2011)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2010)
Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010)
Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning (2016)
Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: Advances in Neural Information Processing Systems, pp. 14680–14691 (2019)
Rettie, R., Grandcolas, U., Deakins, B.: Text message advertising: response rates and branding effects. J. Target. Meas. Anal. Mark. 13(4), 304–312 (2005)
Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)
Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning with memory-augmented neural networks. In: International Conference on Machine Learning, pp. 1842–1850 (2016)
Sigrist, M.K., Taal, M.W., Bungay, P., McIntyre, C.W.: Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2(6), 1241–1248 (2007)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)
Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2011)
Špetlík, R., Franc, V., Matas, J.: Visual heart rate estimation with convolutional neural network. In: Proceedings of the British Machine Vision Conference, Newcastle, UK, pp. 3–6 (2018)
Streifler, J.Y., Eliasziw, M., Benavente, O.R., Hachinski, V.C., Fox, A.J., Barnett, H.: Lack of relationship between leukoaraiosis and carotid artery disease. Arch. Neurol. 52(1), 21–24 (1995)
Takano, C., Ohta, Y.: Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 29(8), 853–857 (2007)
Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, J.F., Sebe, N.: Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2396–2404 (2016)
Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21434–21445 (2008)
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)
Wang, W., den Brinker, A.C., Stuijk, S., de Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)
Wang, W., den Brinker, A.C., Stuijk, S., de Haan, G.: Robust heart rate from fitness videos. Physiol. Meas. 38(6), 1023 (2017)
Weersma, R.K., et al.: Molecular prediction of disease risk and severity in a large Dutch Crohn’s disease cohort. Gut 58(3), 388–395 (2009)
Wu, Y., Rosca, M., Lillicrap, T.: Deep compressed sensing. arXiv preprint arXiv:1905.06723 (2019)
Yu, H., et al.: Foal: fast online adaptive learning for cardiac motion estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4313–4323 (2020)
Yu, Z., Li, X., Zhao, G.: Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. In: Proceedings BMVC, pp. 1–12 (2019)
Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G.: Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 151–160 (2019)
Zintgraf, L.M., Shiarlis, K., Kurin, V., Hofmann, K., Whiteson, S.: Fast context adaptation via meta-learning. arXiv preprint arXiv:1810.03642 (2018)
Acknowledgements
This work is supported by Ministry of Science and Technology (MOST) of Taiwan: 107-2221-E-009 -125 -MY3.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 1753 KB)
Supplementary material 3 (mp4 1601 KB)
Supplementary material 4 (mp4 1715 KB)
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, E., Chen, E., Lee, CY. (2020). Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-learner. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12372. Springer, Cham. https://doi.org/10.1007/978-3-030-58583-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-58583-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58582-2
Online ISBN: 978-3-030-58583-9
eBook Packages: Computer ScienceComputer Science (R0)