Category Level Object Pose Estimation via Neural Analysis-by-Synthesis | SpringerLink
Skip to main content

Category Level Object Pose Estimation via Neural Analysis-by-Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12371))

Included in the following conference series:

  • 3716 Accesses

Abstract

Many object pose estimation algorithms rely on the analysis-by-synthesis framework which requires explicit representations of individual object instances. In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module that is capable of implicitly representing the appearance, shape and pose of entire object categories, thus rendering the need for explicit CAD models per object instance unnecessary. The image synthesis network is designed to efficiently span the pose configuration space so that model capacity can be used to capture the shape and local appearance (i.e., texture) variations jointly. At inference time the synthesized images are compared to the target via an appearance based loss and the error signal is backpropagated through the network to the input parameters. Keeping the network parameters fixed, this allows for iterative optimization of the object pose, shape and appearance in a joint manner and we experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone. When provided with depth measurements, to overcome scale ambiguities, the method can accurately recover the full 6DOF pose successfully.

X. Chen and Z. Dong—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Project homepage: ait.ethz.ch/projects/2020/neural-object-fitting.

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: how to embed images into the stylegan latent space? In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  2. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: Proceedings of the International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  3. Bau, D., et al.: Semantic photo manipulation with a generative image prior. In: ACM Transactions on Graphics (TOG) (2019)

    Google Scholar 

  4. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures (1992)

    Google Scholar 

  5. Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., Davison, A.J.: Codeslam-learning a compact, optimisable representation for dense visual slam. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  6. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: Generative and discriminative voxel modeling with convolutional neural networks. In: arXiv (2016)

    Google Scholar 

  7. Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. In: arXiv (2015)

    Google Scholar 

  8. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  9. Chen, X., Song, J., Hilliges, O.: Monocular neural image based rendering with continuous view control. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  10. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  12. Gao, L., et al.: SDM-net: deep generative network for structured deformable mesh. In: ACM Transactions on Graphics (TOG) (2019)

    Google Scholar 

  13. Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: Ganfit: generative adversarial network fitting for high fidelity 3D face reconstruction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  14. Gu, J., Shen, Y., Zhou, B.: Image processing using multi-code GAN prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  16. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  17. Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6D object pose estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  18. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  19. Jahanian, A., Chai, L., Isola, P.: On the “steerability" of generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  20. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  22. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: Making RGB-based 3D detection and 6D pose estimation great again. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  23. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional inverse graphics network. In: Advances in Neural Information Processing Systems (NeurIPS) (2015)

    Google Scholar 

  24. Li, Y., Wang, G., Ji, X., Xiang, Yu., Fox, D.: DeepIM: deep iterative matching for 6D pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 695–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_42

    Chapter  Google Scholar 

  25. Li, Z., Wang, G., Ji, X.: CDPN: coordinates-based disentangled pose network for real-time RGB-based 6-DOF object pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  26. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D object reconstruction. In: AAAI (2018)

    Google Scholar 

  27. Locatello, F., et al.: Challenging common assumptions in the unsupervised learning of disentangled representations. In: Proceedings of the International Conference on Machine Learning (ICML) (2019)

    Google Scholar 

  28. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: ACM Transactions on Graphics (TOG) (2015)

    Google Scholar 

  29. Manhardt, F., Kehl, W., Navab, N., Tombari, F.: Deep model-based 6D pose refinement in RGB. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 833–849. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_49

    Chapter  Google Scholar 

  30. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  31. Mustikovela, S.K., et al.: Self-supervised viewpoint learning from image collections. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  32. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: Hologan: unsupervised learning of 3D representations from natural images. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  33. Oberweger, M., Rad, M., Lepetit, V.: Making deep heatmaps robust to partial occlusions for 3D object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 125–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_8

    Chapter  Google Scholar 

  34. Olszewski, K., Tulyakov, S., Woodford, O., Li, H., Luo, L.: Transformable bottleneck networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  35. Park, E., Yang, J., Yumer, E., Ceylan, D., Berg, A.C.: Transformation-grounded image generation network for novel 3D view synthesis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  36. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  37. Park, K., Mousavian, A., Xiang, Y., Fox, D.: Latentfusion: end-to-end differentiable reconstruction and rendering for unseen object pose estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  38. Park, K., Patten, T., Vincze, M.: Pix2pose: pixel-wise coordinate regression of objects for 6D pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  39. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6D of pose estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  40. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. In: ACM Transactions on Graphics (TOG) (2017)

    Google Scholar 

  41. Rad, M., Lepetit, V.: BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  42. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANS for semantic face editing. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  43. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  44. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: learning persistent 3d feature embeddings. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  45. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  46. Sun, S.-H., Huh, M., Liao, Y.-H., Zhang, N., Lim, J.J.: Multi-view to novel view: synthesizing novel views with self-learned confidence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 162–178. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_10

    Chapter  Google Scholar 

  47. Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3D mesh models. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  48. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Multi-view 3D models from single images with a convolutional network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 322–337. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_20

    Chapter  Google Scholar 

  49. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6D object pose prediction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  50. Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  51. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. In: IEEE Transactions on Image Processing (TIP) (2004)

    Google Scholar 

  52. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  53. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: Robotics: Science and Systems (RSS) (2018)

    Google Scholar 

  54. Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow: 3D point cloud generation with continuous normalizing flows. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  55. Zakharov, S., Shugurov, I., Ilic, S.: DPOD: 6D pose object detector and refiner. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  56. Zeng, A., et al.: Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: Proceedings of the International Conference on on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  57. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

  58. Zhu, J.Y., et al.: Visual object networks: image generation with disentangled 3D representations. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

Download references

Acknowledgement

This research was partially supported by the Max Planck ETH Center for Learning Systems and a research gift from NVIDIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2151 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O. (2020). Category Level Object Pose Estimation via Neural Analysis-by-Synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58574-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58573-0

  • Online ISBN: 978-3-030-58574-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics