DOPE: Distillation of Part Experts for Whole-Body 3D Pose Estimation in the Wild | SpringerLink
Skip to main content

DOPE: Distillation of Part Experts for Whole-Body 3D Pose Estimation in the Wild

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12371))

Included in the following conference series:

Abstract

We introduce DOPE, the first method to detect and estimate whole-body 3D human poses, including bodies, hands and faces, in the wild. Achieving this level of details is key for a number of applications that require understanding the interactions of the people with each other or with the environment. The main challenge is the lack of in-the-wild data with labeled whole-body 3D poses. In previous work, training data has been annotated or generated for simpler tasks focusing on bodies, hands or faces separately. In this work, we propose to take advantage of these datasets to train independent experts for each part, namely a body, a hand and a face expert, and distill their knowledge into a single deep network designed for whole-body 2D-3D pose detection. In practice, given a training image with partial or no annotation, each part expert detects its subset of keypoints in 2D and 3D and the resulting estimations are combined to obtain whole-body pseudo ground-truth poses. A distillation loss encourages the whole-body predictions to mimic the experts’ outputs. Our results show that this approach significantly outperforms the same whole-body model trained without distillation while staying close to the performance of the experts. Importantly, DOPE is computationally less demanding than the ensemble of experts and can achieve real-time performance. Test code and models are available at https://europe.naverlabs.com/research/computer-vision/dope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: CVPR (2014)

    Google Scholar 

  2. Armagan, A., et al.: Measuring generalisation to unseen viewpoints, articulations, shapes and objects for 3D hand pose estimation under hand-object interaction. In: ECCV (2020)

    Google Scholar 

  3. Arnab, A., Doersch, C., Zisserman, A.: Exploiting temporal context for 3D human pose estimation in the wild. In: CVPR (2019)

    Google Scholar 

  4. Bhardwaj, S., Srinivasan, M., Khapra, M.M.: Efficient video classification using fewer frames. In: CVPR (2019)

    Google Scholar 

  5. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH (1999)

    Google Scholar 

  6. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3D human pose and shape from a single image. In: ECCV (2016)

    Google Scholar 

  7. Booth, J., Roussos, A., Zafeiriou, S., Ponniahy, A., Dunaway, D.: A 3D morphable model learnt from 10,000 faces. In: CVPR (2016)

    Google Scholar 

  8. Boukhayma, A., de Bem, R., Torr, P.H.S.: 3D hand shape and pose from images in the wild. In: CVPR (2019)

    Google Scholar 

  9. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: ICCV (2017)

    Google Scholar 

  10. Cai, Y., Ge, L., Cai, J., Yuan, J.: Weakly-supervised 3D hand pose estimation from monocular RGB images. In: ECCV (2018)

    Google Scholar 

  11. Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: FaceWarehouse: a 3D facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20(3), 413–425 (2013)

    Google Scholar 

  12. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. In: arXiv preprint arXiv:1812.08008 (2018)

  13. Chen, C.H., Ramanan, D.: 3D human pose estimation = 2D pose estimation + matching. In: CVPR (2017)

    Google Scholar 

  14. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: NeurIPS (2017)

    Google Scholar 

  15. Cimen, G., Maurhofer, C., Sumner, B., Guay, M.: AR poser: automatically augmenting mobile pictures with digital avatars imitating poses. In: CGVCVIP (2018)

    Google Scholar 

  16. Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: MARS: motion-augmented RGB stream for action recognition. In: CVPR (2019)

    Google Scholar 

  17. Crispell, D., Bazik, M.: Pix2Face: direct 3D face model estimation. In: ICCV Workshop (2017)

    Google Scholar 

  18. Deng, J., et al.: The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking. IJCV 127(6–7), 599–624 (2019)

    Article  Google Scholar 

  19. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: ICCV (2017)

    Google Scholar 

  20. Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: ECCV (2020)

    Google Scholar 

  21. Garcia-Salguero, M., Gonzalez-Jimenez, J., Moreno, F.A.: Human 3D pose estimation with a tilting camera for social mobile robot interaction. Sensors 19(22), 4943 (2019)

    Article  Google Scholar 

  22. Ge, L., et al.: 3D hand shape and pose estimation from a single RGB image. In: CVPR (2019)

    Google Scholar 

  23. Gui, L.Y., Zhang, K., Wang, Y.X., Liang, X., Moura, J.M., Veloso, M.: Teaching robots to predict human motion. In: IROS (2018)

    Google Scholar 

  24. Habibie, I., Xu, W., Mehta, D., Pons-Moll, G., Theobalt, C.: In the wild human pose estimation using explicit 2D features and intermediate 3D representations. In: CVPR (2019)

    Google Scholar 

  25. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3D annotation of hand and objects poses. In: CVPR (2020)

    Google Scholar 

  26. Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: CVPR (2019)

    Google Scholar 

  27. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  29. Hidalgo, G., et al.: Single-network whole-body pose estimation. In: ICCV (2019)

    Google Scholar 

  30. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Workshop (2014)

    Google Scholar 

  31. Hoffman, J., Gupta, S., Darrell, T.: Learning with side information through modality hallucination. In: CVPR (2016)

    Google Scholar 

  32. Hou, S., Pan, X., Change Loy, C., Wang, Z., Lin, D.: Lifelong learning via progressive distillation and retrospection. In: ECCV (2018)

    Google Scholar 

  33. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. PAMI 36(7), 1325–1339 (2013)

    Google Scholar 

  34. Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3D face reconstruction from a single image via direct volumetric CNN regression. In: ICCV (2017)

    Google Scholar 

  35. Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human pose estimation. In: BMVC (2010)

    Google Scholar 

  36. Johnson, S., Everingham, M.: Learning effective human pose estimation from inaccurate annotation. In: CVPR (2011)

    Google Scholar 

  37. Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: CVPR (2018)

    Google Scholar 

  38. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: closing the loop between 3D and 2D human representations. In: CVPR (2017)

    Google Scholar 

  39. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML Workshop (2013)

    Google Scholar 

  40. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (ToG) 36(6), 194 (2017)

    Google Scholar 

  41. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV (2014)

    Google Scholar 

  42. Liu, X., He, P., Chen, W., Gao, J.: Improving multi-task deep neural networks via knowledge distillation for natural language understanding. arXiv preprint arXiv:1904.09482 (2019)

  43. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. 34(6), 1–16 (2015)

    Article  Google Scholar 

  44. Lopez-Paz, D., Bottou, L., Schölkopf, B., Vapnik, V.: Unifying distillation and privileged information. In: ICLR (2016)

    Google Scholar 

  45. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: ICCV (2017)

    Google Scholar 

  46. Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 3DV (2018)

    Google Scholar 

  47. Mehta, D., et al.: VNect: real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. 36(4), 1–14 (2017)

    Article  Google Scholar 

  48. Moon, G., Chang, J.Y., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: ICCV (2019)

    Google Scholar 

  49. Mueller, F., et al.: GANerated hands for real-time 3D hand tracking from monocular RGB. In: CVPR (2018)

    Google Scholar 

  50. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  51. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR (2019)

    Google Scholar 

  52. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: CVPR (2017)

    Google Scholar 

  53. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  54. Rogez, G., Schmid, C.: Mocap-guided data augmentation for 3D pose estimation in the wild. In: NIPS (2016)

    Google Scholar 

  55. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-Net++: multi-person 2D and 3D pose detection in natural images. IEEE Trans. PAMI 42(5), 1146–1161 (2019)

    Google Scholar 

  56. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. 36(6), 245 (2017)

    Article  Google Scholar 

  57. Sanyal, S., Bolkart, T., Feng, H., Black, M.J.: Learning to regress 3D face shape and expression from an image without 3D supervision. In: CVPR (2019)

    Google Scholar 

  58. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: CVPR (2017)

    Google Scholar 

  59. Spurr, A., Song, J., Park, S., Hilliges, O.: Cross-modal deep variational hand pose estimation. In: CVPR (2018)

    Google Scholar 

  60. Supančič, J.S., Rogez, G., Yang, Y., Shotton, J., Ramanan, D.: Depth-based hand pose estimation: methods, data, and challenges. IJCV 126(11), 1180–1198 (2018)

    Article  Google Scholar 

  61. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control and knowledge transfer. JMLR 16(1), 2023–2049 (2015)

    MathSciNet  MATH  Google Scholar 

  62. Varol, G., et al.: Learning from synthetic humans. In: CVPR (2017)

    Google Scholar 

  63. Wu, Y., Ji, Q.: Facial landmark detection: a literature survey. IJCV 127(2), 115–142 (2019)

    Article  Google Scholar 

  64. Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: Posing face, body, and hands in the wild. In: CVPR (2019)

    Google Scholar 

  65. Xiong, P., Li, G., Sun, Y.: Combining local and global features for 3D face tracking. In: ICCV Workshops (2017)

    Google Scholar 

  66. Yang, L., Li, S., Lee, D., Yao, A.: Aligning latent spaces for 3D hand pose estimation. In: ICCV (2019)

    Google Scholar 

  67. Yuan, S., Stenger, B., Kim, T.K.: RGB-based 3D hand pose estimation via privileged learning with depth images. arXiv preprint arXiv:1811.07376 (2018)

  68. Zadeh, A., Baltrusaitis, T., Morency, L.P.: Convolutional experts constrained local model for facial landmark detection. In: CVPR Workshop (2017)

    Google Scholar 

  69. Zafeiriou, S., Chrysos, G., Roussos, A., Ververas, E., Deng, J., Trigeorgis, G.: The 3D menpo facial landmark tracking challenge. In: ICCV Workshops (2017)

    Google Scholar 

  70. Zhang, J., Jiao, J., Chen, M., Qu, L., Xu, X., Yang, Q.: A hand pose tracking benchmark from stereo matching. In: ICIP (2017)

    Google Scholar 

  71. Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W.: End-to-end hand mesh recovery from a monocular RGB image. In: ICCV (2019)

    Google Scholar 

  72. Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3D total solution. IEEE Trans. PAMI 41(1), 78–92 (2017)

    Article  Google Scholar 

  73. Zimmermann, C., Brox, T.: Learning to estimate 3D hand pose from single RGB images. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Weinzaepfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weinzaepfel, P., Brégier, R., Combaluzier, H., Leroy, V., Rogez, G. (2020). DOPE: Distillation of Part Experts for Whole-Body 3D Pose Estimation in the Wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12371. Springer, Cham. https://doi.org/10.1007/978-3-030-58574-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58574-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58573-0

  • Online ISBN: 978-3-030-58574-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics