Towards Unique and Informative Captioning of Images | SpringerLink
Skip to main content

Towards Unique and Informative Captioning of Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Despite considerable progress, state of the art image captioning models produce generic captions, leaving out important image details. Furthermore, these systems may even misrepresent the image in order to produce a simpler caption consisting of common concepts. In this paper, we first analyze both modern captioning systems and evaluation metrics through empirical experiments to quantify these phenomena. We find that modern captioning systems return higher likelihoods for incorrect distractor sentences compared to ground truth captions, and that evaluation metrics like SPICE can be ‘topped’ using simple captioning systems relying on object detectors. Inspired by these observations, we design a new metric (SPICE-U) by introducing a notion of uniqueness over the concepts generated in a caption. We show that SPICE-U is better correlated with human judgements compared to SPICE, and effectively captures notions of diversity and descriptiveness. Finally, we also demonstrate a general technique to improve any existing captioning model – by using mutual information as a re-ranking objective during decoding. Empirically, this results in more unique and informative captions, and improves three different state-of-the-art models on SPICE-U as well as average score over existing metrics (Code is available at https://github.com/princetonvisualai/SPICE-U).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The objects classes are: man, person, tree, ground, shirt, wall, sky, window, building, and head.

  2. 2.

    The trained object detectors are taken from the bottom-up part of the captioning model  [2].

  3. 3.

    The resulting model is similar to Baby Talk  [15], which uses object, attribute, and relationship classifiers to generate image descriptions.

  4. 4.

    For “There is a person” uniqueness is 0, since it’s the most common of the objects, and SPICE-U score is 0 by definition.

  5. 5.

    We calculate the correlation between the mean value of human votes (+1 if they prefer caption b over caption c, −1 otherwise) and the score \(R_m(b) - R_m(c)\), where \(R_m(s)\) is the score of sentence s given by metric m.

  6. 6.

    We also tried linear interpolation and it works not as good as the log-linear interpolation.

  7. 7.

    The TopDown model from https://github.com/poojahira/image-captioning-bot-tom-up-top-down, the DiscCap from https://github.com/ruotianluo/DiscCap-tioning and AoANet from https://github.com/husthuaan/AoANet.

  8. 8.

    The captioning metrics measure different aspects of the captions and are largely uncorrelated with each other  [33]; we use the geometric mean as a simple summary statistic of the overall performance of the models. For CHAIR lower scores are better so we use \(\frac{1}{CHAIR}\) in the geometric mean.

References

  1. Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: ECCV (2016)

    Google Scholar 

  2. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: CVPR (2018)

    Google Scholar 

  3. Bahl, L., Brown, P., de Souza, P., Mercer, R.: Maximum mutual information estimation of hidden Markov model parameters for speech recognition. In: ICASSP (1986)

    Google Scholar 

  4. Cui, Y., Yang, G., Veit, A., Huang, X., Belongie, S.: Learning to evaluate image captioning. In: CVPR (2018)

    Google Scholar 

  5. Datta, D., Varma, S., Chowdary, C.R., Singh, S.K.: Multimodal retrieval using mutual information based textual query reformulation. Expert Syst. Appl. 68, 81–92 (2017)

    Article  Google Scholar 

  6. Dognin, P., Melnyk, I., Mroueh, Y., Ross, J., Sercu, T.: Adversarial semantic alignment for improved image captions. In: CVPR (2019)

    Google Scholar 

  7. Henning, C.A., Ewerth, R.: Estimating the information gap between textual and visual representations. In: ICMR (2017)

    Google Scholar 

  8. Huang, L., Wang, W., Chen, J., Wei, X.Y.: Attention on attention for image captioning. In: ICCV (2019)

    Google Scholar 

  9. Johnson, J., Karpathy, A., Fei-Fei, L.: DenseCap: fully convolutional localization networks for dense captioning. In: CVPR (2016)

    Google Scholar 

  10. Johnson, J., et al.: Image retrieval using scene graphs. In: CVPR (2015)

    Google Scholar 

  11. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: CVPR (2015)

    Google Scholar 

  12. Kimura, R., Iida, S., Cui, H., Hung, P.H., Utsuro, T., Nagata, M.: Selecting informative context sentence by forced back-translation. In: MT Summit XVII (2019)

    Google Scholar 

  13. Krause, J., Johnson, J., Krishna, R., Fei-Fei, L.: A hierarchical approach for generating descriptive image paragraphs. In: CVPR (2017)

    Google Scholar 

  14. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017). https://doi.org/10.1007/s11263-016-0981-7

    Article  MathSciNet  Google Scholar 

  15. Kulkarni, G., et al.: BabyTalk: understanding and generating simple image descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2891–2903 (2013)

    Article  Google Scholar 

  16. Lavie, A., Agarwal, A.: Meteor: an automatic metric for MT evaluation with high levels of correlation with human judgments. In: StatMT (2007)

    Google Scholar 

  17. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A diversity-promoting objective function for neural conversation models. In: NAACL HLT (2016)

    Google Scholar 

  18. Li, J., Jurafsky, D.: Mutual Information and Diverse Decoding Improve Neural Machine Translation. arXiv:1601.00372 [cs] (2016). arXiv: 1601.00372

  19. Li, W., et al.: Object-driven text-to-image synthesis via adversarial training. In: CVPR (2019)

    Google Scholar 

  20. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: ECCV (2014)

    Google Scholar 

  21. Lindh, A., Ross, R.J., Mahalunkar, A., Salton, G., Kelleher, J.D.: Generating diverse and meaningful captions. In: ICANN (2018)

    Google Scholar 

  22. Liu, L., Tang, J., Wan, X., Guo, Z.: Generating diverse and descriptive image captions using visual paraphrases. In: ICCV (2019)

    Google Scholar 

  23. Liu, S., Zhu, Z., Ye, N., Guadarrama, S., Murphy, K.: Improved image captioning via policy gradient optimization of SPIDEr. In: ICCV (2017)

    Google Scholar 

  24. Liu, X., Li, H., Shao, J., Chen, D., Wang, X.: Show, tell and discriminate: image captioning by self-retrieval with partially labeled data. In: ECCV (2018)

    Google Scholar 

  25. Lu, D., Whitehead, S., Huang, L., Ji, H., Chang, S.F.: Entity-aware image caption generation. In: EMNLP (2018)

    Google Scholar 

  26. Lu, J., Xiong, C., Parikh, D., Socher, R.: knowing when to look: adaptive attention via a visual sentinel for image captioning. In: CVPR (2017)

    Google Scholar 

  27. Luo, R., Shakhnarovich, G., Cohen, S., Price, B.: Discriminability objective for training descriptive captions. In: CVPR (2018)

    Google Scholar 

  28. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR (2016)

    Google Scholar 

  29. Melas-Kyriazi, L., Rush, A., Han, G.: Training for diversity in image paragraph captioning. In: EMNLP (2018)

    Google Scholar 

  30. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: ACL (2001)

    Google Scholar 

  31. Povey, D., Woodland, P.: Minimum phone error and I-smoothing for improved discriminative training. In: ICASSP (2002)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  33. Rohrbach, A., Hendricks, L.A., Burns, K., Darrell, T., Saenko, K.: Object hallucination in image captioning. In: EMNLP (2018)

    Google Scholar 

  34. Shetty, R., Rohrbach, M., Hendricks, L.A., Fritz, M., Schiele, B.: speaking the same language: matching machine to human captions by adversarial training. In: ICCV (2017)

    Google Scholar 

  35. Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. (1972)

    Google Scholar 

  36. Tu, Z., Liu, Y., Shang, L., Liu, X., Li, H.: Neural machine translation with reconstruction. In: AAAI (2017)

    Google Scholar 

  37. Vedantam, R., Bengio, S., Murphy, K., Parikh, D., Chechik, G.: Context-aware captions from context-agnostic supervision. In: CVPR (2017)

    Google Scholar 

  38. Vedantam, R., Zitnick, C.L., Parikh, D.: CIDEr: consensus-based image description evaluation. In: CVPR (2015)

    Google Scholar 

  39. Vijayakumar, A.K., et al.: Diverse beam search for improved description of complex scenes. In: AAAI (2018)

    Google Scholar 

  40. Vijayakumar, A.K., et al.: Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models. arXiv:1610.02424 [cs] (2018). arXiv: 1610.02424

  41. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: CVPR (2015)

    Google Scholar 

  42. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and Tell: Lessons Learned from the 2015 MSCOCO Image Captioning Challenge (2017)

    Google Scholar 

  43. Wang, Q., Chan, A.B.: Describing like humans: on diversity in image captioning. In: CVPR (2019)

    Google Scholar 

  44. Wu, B., Jia, F., Liu, W., Ghanem, B.: Diverse image annotation. In: CVPR (2017)

    Google Scholar 

  45. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: ICML (2015)

    Google Scholar 

  46. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  47. Yao, T., Mei, T., Ngo, C.W.: Co-reranking by mutual reinforcement for image search. In: CVPR (2010)

    Google Scholar 

  48. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: CVPR (2016)

    Google Scholar 

  49. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  50. Zhang, Y., et al.: Generating informative and diverse conversational responses via adversarial information maximization. In: NeurIPS (2018)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by KAUST under Award No. OSRCRG2017-3405, by Samsung and by the Princeton CSML DataX award. We would like to thank Arjun Mani, Vikram Ramaswamy and Angelina Wang for their helpful feedback on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Feng, B., Narasimhan, K., Russakovsky, O. (2020). Towards Unique and Informative Captioning of Images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12352. Springer, Cham. https://doi.org/10.1007/978-3-030-58571-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58571-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58570-9

  • Online ISBN: 978-3-030-58571-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics