We Have So Much in Common: Modeling Semantic Relational Set Abstractions in Videos | SpringerLink
Skip to main content

We Have So Much in Common: Modeling Semantic Relational Set Abstractions in Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

  • 3896 Accesses

Abstract

Identifying common patterns among events is a key capability for human and machine perception, as it underlies intelligent decision making. Here, we propose an approach for learning semantic relational set abstractions on videos, inspired by human learning. Our model combines visual features as input with natural language supervision to generate high-level representations of similarities across a set of videos. This allows our model to perform cognitive tasks such as set abstraction (which general concept is in common among a set of videos?), set completion (which new video goes well with the set?), and odd one out detection (which video does not belong to the set?). Experiments on two video benchmarks, Kinetics and Multi-Moments in Time, show that robust and versatile representations emerge when learning to recognize commonalities among sets. We compare our model to several baseline algorithms and show that significant improvements result from explicitly learning relational abstractions with semantic supervision. Code and models are available online (Project website: abstraction.csail.mit.edu).

A. Andonian and C. Fosco—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that these tasks are challenging for humans, who must disregard similarities across scenes, colors, etc. The model can circumvent this problem as it is trained only on event abstractions.

References

  1. Alfassy, A., et al.: Laso: label-set operations networks for multi-label few-shot learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  2. Bannour, H., Hudelot, C.: Hierarchical image annotation using semantic hierarchies. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2431–2434. ACM (2012)

    Google Scholar 

  3. Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D., Kavukcuoglu, K.: Interaction networks for learning about objects, relations and physics. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 4502–4510. Curran Associates, Inc. (2016)

    Google Scholar 

  4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017). https://doi.org/10.1162/tacl_a_00051

    Article  Google Scholar 

  5. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. In: Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS 1993, pp. 737–744. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  6. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the ICCV (2017)

    Google Scholar 

  7. Chang, X., Yang, Y., Hauptmann, A.G., Xing, E.P., Yu, Y.L.: Semantic concept discovery for large-scale zero-shot event detection. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 2234–2240. AAAI Press (2015)

    Google Scholar 

  8. Deng, J., et al.: Large-scale object classification using label relation graphs. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 48–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_4

    Chapter  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Deng, J., Satheesh, S., Berg, A.C., Li, F.: Fast and balanced: efficient label tree learning for large scale object recognition. In: Advances in Neural Information Processing Systems, pp. 567–575 (2011)

    Google Scholar 

  11. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)

    Google Scholar 

  12. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  13. Fernando, B., Bilen, H., Gavves, E., Gould, S.: Self-supervised video representation learning with odd-one-out networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Jain, M., van Gemert, J.C., Mensink, T., Snoek, C.G.M.: Objects2action: classifying and localizing actions without any video example. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  17. Jia, Y., Abbott, J.T., Austerweil, J.L., Griffiths, T., Darrell, T.: Visual concept learning: combining machine vision and Bayesian generalization on concept hierarchies. In: Advances in Neural Information Processing Systems, pp. 1842–1850 (2013)

    Google Scholar 

  18. Jia, Y., Abbott, J.T., Austerweil, J.L., Griffiths, T., Darrell, T.: Visual concept learning: combining machine vision and Bayesian generalization on concept hierarchies. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 1842–1850. Curran Associates, Inc. (2013)

    Google Scholar 

  19. Kay, W., et al.: The kinetics human action video dataset. CoRR abs/1705.06950 (2017)

    Google Scholar 

  20. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop (2015)

    Google Scholar 

  21. Kordopatis-Zilos, G., Papadopoulos, S., Patras, I., Kompatsiaris, I.: Visil: fine-grained spatio-temporal video similarity learning. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  22. Lee, H., Seol, J., Lee, S.: Style2vec: representation learning for fashion items from style sets. CoRR abs/1708.04014 (2017)

    Google Scholar 

  23. Lim, J.J., Salakhutdinov, R.R., Torralba, A.: Transfer learning by borrowing examples for multiclass object detection. In: Advances in Neural Information Processing Systems, pp. 118–126 (2011)

    Google Scholar 

  24. McGreggor, K., Goel, A.: Finding the odd one out: a fractal analogical approach. In: Proceedings of the 8th ACM Conference on Creativity and Cognition, C&C 2011, pp. 289–298. ACM, New York (2011). https://doi.org/10.1145/2069618.2069666

  25. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013)

    Google Scholar 

  26. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to wordnet: an on-line lexical database. Int. J. Lexicography 3(4), 235–244 (1990)

    Article  Google Scholar 

  27. Monfort, M., et al.: Multi-moments in time: learning and interpreting models for multi-action video understanding (2019)

    Google Scholar 

  28. Muhammad, U.R., Yang, Y., Hospedales, T.M., Xiang, T., Song, Y.Z.: Goal-driven sequential data abstraction. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  29. Nauata, N., Hu, H., Zhou, G.T., Deng, Z., Liao, Z., Mori, G.: Structured label inference for visual understanding. arXiv preprint arXiv:1802.06459 (2018)

  30. Nauata, N., Smith, J., Mori, G.: Hierarchical label inference for video classification. arXiv preprint arXiv:1706.05028 (2017)

  31. Santoro, A., et al.: A simple neural network module for relational reasoning. In: Advances in Neural Information Processing Systems, pp. 4967–4976 (2017)

    Google Scholar 

  32. Santoro, A., et al.: A simple neural network module for relational reasoning. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 4967–4976. Curran Associates, Inc. (2017)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  34. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure and abstraction. Science 31, 1279–1285 (2011)

    Article  MathSciNet  Google Scholar 

  35. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  36. Verma, N., Mahajan, D., Sellamanickam, S., Nair, V.: Learning hierarchical similarity metrics. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2280–2287. IEEE (2012)

    Google Scholar 

  37. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  38. Wang, Y., Hoai, M.: Pulling actions out of context: explicit separation for effective combination. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  39. Xiao, J., Ehinger, K.A., Hays, J., Torralba, A., Oliva, A.: Sun database: exploring a large collection of scene categories. Int. J. Comput. Vis. 119(1), 3–22 (2016)

    Article  MathSciNet  Google Scholar 

  40. Ye, G., Li, Y., Xu, H., Liu, D., Chang, S.F.: EventNet: a large scale structured concept library for complex event detection in video. In: Proceedings of the 23rd ACM International Conference on Multimedia, MM 2015, pp. 471–480. ACM, New York (2015). https://doi.org/10.1145/2733373.2806221

  41. Aytar, Y., Shah, M., Luo, J.: Utilizing semantic word similarity measures for video retrieval. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008. https://doi.org/10.1109/CVPR.2008.4587822

  42. Zhao, Z., et al.: Instance-based video search via multi-task retrieval and re-ranking. In: The IEEE International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  43. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 831–846. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_49

    Chapter  Google Scholar 

  44. Zolfaghari, M., Singh, K., Brox, T.: ECO: efficient convolutional network for online video understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 713–730. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_43

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the MIT-IBM Watson AI Lab (to R.F and A.O) and NSF IIS 1850069 (to C.V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Andonian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3912 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andonian, A. et al. (2020). We Have So Much in Common: Modeling Semantic Relational Set Abstractions in Videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics