Abstract
As machine learning is increasingly used to help make decisions, there is a demand for these decisions to be explainable. Arguably, the most explainable machine learning models use decision rules. This paper focuses on decision sets, a type of model with unordered rules, which explains each prediction with a single rule. In order to be easy for humans to understand, these rules must be concise. Earlier work on generating optimal decision sets first minimizes the number of rules, and then minimizes the number of literals, but the resulting rules can often be very large. Here we consider a better measure, namely the total size of the decision set in terms of literals. So we are not driven to a small set of rules which require a large number of literals. We provide the first approach to determine minimum-size decision sets that achieve minimum empirical risk and then investigate sparse alternatives where we trade accuracy for size. By finding optimal solutions we show we can build decision set classifiers that are almost as accurate as the best heuristic methods, but far more concise, and hence more explainable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The prototype adapts all the developed models to the case of multiple classes, which is motivated by the practical importance of non-binary classification.
- 3.
This average value is the highest possible accuracy that can be achieved on these datasets whatever machine learning model is considered.
- 4.
In a unit-size decision set, the literal is meant to assign a constant class. This can be seen as applying a default rule.
References
Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 167–180. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_18
Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_23
Australian Government.: Artificial Intelligence Roadmap, November 2019. https://data61.csiro.au/en/Our-Research/Our-Work/AI-Roadmap
Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)
Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8_8
Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)
Batcher, K.E.: Sorting networks and their applications. In: AFIPS, vol. 32, pp. 307–314 (1968)
Bessiere, C., Hebrard, E., O’Sullivan, B.: Minimising decision tree size as combinatorial optimisation. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 173–187. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_16
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)
Clark, P., Boswell, R.: Rule induction with CN2: some recent improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0017011
Clark, P., Niblett, T.: The CN2 induction algorithm. Mach. Learn. 3, 261–283 (1989)
Cohen, W.: Fast effective rule induction. In: ICML, pp. 115–123 (1995)
Darwiche, A.: Three modern roles for logic in AI. In: PODS, pp. 229–243. ACM (2020)
Dash, S., Günlük, O., Wei, D.: Boolean decision rules via column generation. In: NeurIPS, pp. 4660–4670 (2018)
Doshi-Velez, F., Kim, B.: A roadmap for a rigorous science of interpretability. arXiv preprint arXiv:1702.08608 (2017)
EU Data Protection Regulation.: Regulation (EU) 2016/679 of the European Parliament and of the Council (2016). http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=en
Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif. Intell. Res. 61, 1–64 (2018)
Fürnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7
Ghosh B., Meel, K.S.: IMLI: an incremental framework for MAXSAT-based learning of interpretable classification rules. In: AIES, pp. 203–210. ACM (2019)
Goodman, B., Flaxman, S.R.: European Union regulations on algorithmic decision-making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)
Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini, F.: Factual and counterfactual explanations for black box decision making. IEEE Intell. Syst. 34(6), 14–23 (2019)
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93:1–93:42 (2019)
Gunning, D., Aha, D.: DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019)
Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, San Francisco (2012)
Ignatiev, A.: Towards trustable explainable AI. In: IJCAI, pp. 5154–5158 (2020)
Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: a python toolkit for prototyping with SAT oracles. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 428–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_26
Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J. Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)
Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based explanations for machine learning models. In: AAAI, pp. 1511–1519 (2019)
Ignatiev, A., Narodytska, N., Marques-Silva, J.: On relating explanations and adversarial examples. In: NeurIPS, pp. 15857–15867 (2019)
Ignatiev, A., Pereira, F., Narodytska, N., Marques-Silva, J.: A SAT-based approach to learn explainable decision sets. In: IJCAR, pp. 627–645 (2018)
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)
Kamath, A.P., Karmarkar, N., Ramakrishnan, K.G., Resende, M.G.C.: A continuous approach to inductive inference. Math. Program. 57, 215–238 (1992)
Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: KDD, pp. 1675–1684 (2016)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. In: AAAI, February 2018
Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43 (2018)
Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)
Maliotov, D., Meel, K.S.: MLIC: a MaxSAT-based framework for learning interpretable classification rules. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 312–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_21
Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)
Monroe, D.: AI, explain yourself. Commun. ACM 61(11), 11–13 (2018)
Montavon, G., Samek, W., Müller, K.: Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2018)
Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal decision trees with SAT. In: IJCAI, pp. 1362–1368 (2018)
Orange: A component-based data mining framework. https://orange.biolab.si/
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffmann, San Mateo (1993)
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: KDD, pp. 1135–1144 (2016)
Ribeiro, M.T., Singh, S., Guestrin C.: Anchors: high-precision model-agnostic explanations. In: AAAI (2018)
Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
SAT-based miner of smallest size decision sets. https://github.com/alexeyignatiev/minds
Shih, A., Choi, A., Darwiche, A.: A symbolic approach to explaining bayesian network classifiers. In: IJCAI, pp. 5103–5111 (2018)
Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II, pp. 115–125. Consultants Bureau, New York (1968)
UCI Machine Learning Repository. https://archive.ics.uci.edu/ml
Ruleset covering algorithms for transparent machine learning. https://github.com/imoscovitz/wittgenstein
Acknowledgments
This work is partially supported by the Australian Research Council through Discovery Grant DP170103174.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yu, J., Ignatiev, A., Stuckey, P.J., Le Bodic, P. (2020). Computing Optimal Decision Sets with SAT. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_55
Download citation
DOI: https://doi.org/10.1007/978-3-030-58475-7_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58474-0
Online ISBN: 978-3-030-58475-7
eBook Packages: Computer ScienceComputer Science (R0)