Overview of PAN 2020: Authorship Verification, Celebrity Profiling, Profiling Fake News Spreaders on Twitter, and Style Change Detection | SpringerLink
Skip to main content

Overview of PAN 2020: Authorship Verification, Celebrity Profiling, Profiling Fake News Spreaders on Twitter, and Style Change Detection

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2020)

Abstract

We briefly report on the four shared tasks organized as part of the PAN 2020 evaluation lab on digital text forensics and authorship analysis. Each tasks is introduced, motivated, and the results obtained are presented. Altogether, the four tasks attracted 230 registrations, yielding 83 successful submissions. This, and the fact that we continue to invite the submissions of software rather than its run output using the TIRA experimentation platform, marks for a good start into the second decade of PAN evaluations labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fasttext.cc/docs/en/crawl-vectors.html.

References

  1. Bevendorff, J., et al.: Shared tasks on authorship analysis at PAN 2020. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 508–516. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_66

    Chapter  Google Scholar 

  2. Bevendorff, J., Stein, B., Hagen, M., Potthast, M.: Bias analysis and mitigation in the evaluation of authorship verification. In: 57th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 6301–6306 (2019)

    Google Scholar 

  3. Bevendorff, J., Stein, B., Hagen, M., Potthast, M.: Generalizing unmasking for short texts. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, pp. 654–659 (2019)

    Google Scholar 

  4. Ghanem, B., Rosso, P., Rangel, F.: An emotional analysis of false information in social media and news articles. ACM Trans. Internet Technol. (TOIT) 20(2), 1–18 (2020)

    Article  Google Scholar 

  5. Giachanou, A., Ríssola, E.A., Ghanem, B., Crestani, F., Rosso, Paolo: The role of personality and linguistic patterns in discriminating between fake news spreaders and fact checkers. In: Métais, E., Meziane, F., Horacek, H., Cimiano, P. (eds.) NLDB 2020. LNCS, vol. 12089, pp. 181–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51310-8_17

    Chapter  Google Scholar 

  6. Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2019)

    Google Scholar 

  7. Kestemont, M., Stamatatos, E., Manjavacas, E., Daelemans, W., Potthast, M., Stein, B.: Overview of the cross-domain authorship attribution task at PAN 2019. In: Working Notes Papers of the CLEF 2019 Evaluation Labs. CEUR Workshop Proceedings (2019)

    Google Scholar 

  8. Kestemont, M., et al.: Overview of the author identification task at PAN-2018: cross-domain authorship attribution and style change detection. In: Working Notes Papers of the CLEF 2018 Evaluation Labs. CEUR Workshop Proceedings (2018)

    Google Scholar 

  9. Peñas, A., Rodrigo, A.: A simple measure to assess non-response. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (2011)

    Google Scholar 

  10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Rangel, F., Giachanou, A., Ghanem, B., Rosso, P.: Overview of the 8th author profiling task at PAN 2020: profiling fake news spreaders on Twitter. In: CLEF 2020 Labs and Workshops, Notebook Papers (2020)

    Google Scholar 

  12. Rangel, F., Franco-Salvador, M., Rosso, P.: A low dimensionality representation for language variety identification. In: Gelbukh, A. (ed.) CICLing 2016. LNCS, vol. 9624, pp. 156–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75487-1_13

    Chapter  Google Scholar 

  13. Shu, K., Wang, S., Liu, H.: Understanding user profiles on social media for fake news detection. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 430–435 (2018)

    Google Scholar 

  14. Vo, N., Lee, K.: Learning from fact-checkers: analysis and generation of fact-checking language. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (2019)

    Google Scholar 

  15. Noreen, E.W.: Computer-Intensive Methods for Testing Hypotheses: An Introduction. A Wiley-Interscience Publication, Hoboken (1989)

    Google Scholar 

  16. Wiegmann, M., Potthast, M., Stein, B.: Overview of the celebrity profiling task at PAN 2020. In: CLEF 2020 Labs and Workshops, Notebook Papers (2020)

    Google Scholar 

  17. Wiegmann, M., Stein, B., Potthast, M.: Celebrity profiling. In: 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Association for Computational Linguistics (2019)

    Google Scholar 

  18. Wiegmann, M., Stein, B., Potthast, M.: Overview of the celebrity profiling task at PAN 2019. In: CLEF 2019 Labs and Workshops, Notebook Papers (2019)

    Google Scholar 

  19. Zangerle, E., Mayerl, M., Specht, G., Potthast, M., Stein, B.: Overview of the style change detection task at PAN 2020. In: CLEF 2020 Labs and Workshops, Notebook Papers (2020)

    Google Scholar 

  20. Zangerle, E., Tschuggnall, M., Specht, G., Potthast, M., Stein, B.: Overview of the style change detection task at PAN 2019. In: CLEF 2019 Labs and Workshops, Notebook Papers (2019)

    Google Scholar 

Download references

Acknowledgments

We thank Symanto for sponsoring the ex aequo award for the two best performing systems at the author profiling shared task of this year on Profiling fake news spreaders on Twitter. The work of Paolo Rosso was partially funded by the Spanish MICINN under the research project MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech (PGC2018–096212-B-C31). The work of Anastasia Giachanou is supported by the SNSF Early Postdoc Mobility grant under the project Early Fake News Detection on Social Media, Switzerland (P2TIP2_181441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Wiegmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bevendorff, J. et al. (2020). Overview of PAN 2020: Authorship Verification, Celebrity Profiling, Profiling Fake News Spreaders on Twitter, and Style Change Detection. In: Arampatzis, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2020. Lecture Notes in Computer Science(), vol 12260. Springer, Cham. https://doi.org/10.1007/978-3-030-58219-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58219-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58218-0

  • Online ISBN: 978-3-030-58219-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics