Abstract
We briefly report on the four shared tasks organized as part of the PAN 2020 evaluation lab on digital text forensics and authorship analysis. Each tasks is introduced, motivated, and the results obtained are presented. Altogether, the four tasks attracted 230 registrations, yielding 83 successful submissions. This, and the fact that we continue to invite the submissions of software rather than its run output using the TIRA experimentation platform, marks for a good start into the second decade of PAN evaluations labs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bevendorff, J., et al.: Shared tasks on authorship analysis at PAN 2020. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12036, pp. 508–516. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45442-5_66
Bevendorff, J., Stein, B., Hagen, M., Potthast, M.: Bias analysis and mitigation in the evaluation of authorship verification. In: 57th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 6301–6306 (2019)
Bevendorff, J., Stein, B., Hagen, M., Potthast, M.: Generalizing unmasking for short texts. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, pp. 654–659 (2019)
Ghanem, B., Rosso, P., Rangel, F.: An emotional analysis of false information in social media and news articles. ACM Trans. Internet Technol. (TOIT) 20(2), 1–18 (2020)
Giachanou, A., Ríssola, E.A., Ghanem, B., Crestani, F., Rosso, Paolo: The role of personality and linguistic patterns in discriminating between fake news spreaders and fact checkers. In: Métais, E., Meziane, F., Horacek, H., Cimiano, P. (eds.) NLDB 2020. LNCS, vol. 12089, pp. 181–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51310-8_17
Giachanou, A., Rosso, P., Crestani, F.: Leveraging emotional signals for credibility detection. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 877–880 (2019)
Kestemont, M., Stamatatos, E., Manjavacas, E., Daelemans, W., Potthast, M., Stein, B.: Overview of the cross-domain authorship attribution task at PAN 2019. In: Working Notes Papers of the CLEF 2019 Evaluation Labs. CEUR Workshop Proceedings (2019)
Kestemont, M., et al.: Overview of the author identification task at PAN-2018: cross-domain authorship attribution and style change detection. In: Working Notes Papers of the CLEF 2018 Evaluation Labs. CEUR Workshop Proceedings (2018)
Peñas, A., Rodrigo, A.: A simple measure to assess non-response. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (2011)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Rangel, F., Giachanou, A., Ghanem, B., Rosso, P.: Overview of the 8th author profiling task at PAN 2020: profiling fake news spreaders on Twitter. In: CLEF 2020 Labs and Workshops, Notebook Papers (2020)
Rangel, F., Franco-Salvador, M., Rosso, P.: A low dimensionality representation for language variety identification. In: Gelbukh, A. (ed.) CICLing 2016. LNCS, vol. 9624, pp. 156–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75487-1_13
Shu, K., Wang, S., Liu, H.: Understanding user profiles on social media for fake news detection. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 430–435 (2018)
Vo, N., Lee, K.: Learning from fact-checkers: analysis and generation of fact-checking language. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (2019)
Noreen, E.W.: Computer-Intensive Methods for Testing Hypotheses: An Introduction. A Wiley-Interscience Publication, Hoboken (1989)
Wiegmann, M., Potthast, M., Stein, B.: Overview of the celebrity profiling task at PAN 2020. In: CLEF 2020 Labs and Workshops, Notebook Papers (2020)
Wiegmann, M., Stein, B., Potthast, M.: Celebrity profiling. In: 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019). Association for Computational Linguistics (2019)
Wiegmann, M., Stein, B., Potthast, M.: Overview of the celebrity profiling task at PAN 2019. In: CLEF 2019 Labs and Workshops, Notebook Papers (2019)
Zangerle, E., Mayerl, M., Specht, G., Potthast, M., Stein, B.: Overview of the style change detection task at PAN 2020. In: CLEF 2020 Labs and Workshops, Notebook Papers (2020)
Zangerle, E., Tschuggnall, M., Specht, G., Potthast, M., Stein, B.: Overview of the style change detection task at PAN 2019. In: CLEF 2019 Labs and Workshops, Notebook Papers (2019)
Acknowledgments
We thank Symanto for sponsoring the ex aequo award for the two best performing systems at the author profiling shared task of this year on Profiling fake news spreaders on Twitter. The work of Paolo Rosso was partially funded by the Spanish MICINN under the research project MISMIS-FAKEnHATE on Misinformation and Miscommunication in social media: FAKE news and HATE speech (PGC2018–096212-B-C31). The work of Anastasia Giachanou is supported by the SNSF Early Postdoc Mobility grant under the project Early Fake News Detection on Social Media, Switzerland (P2TIP2_181441).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bevendorff, J. et al. (2020). Overview of PAN 2020: Authorship Verification, Celebrity Profiling, Profiling Fake News Spreaders on Twitter, and Style Change Detection. In: Arampatzis, A., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2020. Lecture Notes in Computer Science(), vol 12260. Springer, Cham. https://doi.org/10.1007/978-3-030-58219-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-58219-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58218-0
Online ISBN: 978-3-030-58219-7
eBook Packages: Computer ScienceComputer Science (R0)