Learning Step-Size Adaptation in CMA-ES | SpringerLink
Skip to main content

Learning Step-Size Adaptation in CMA-ES

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12269))

Included in the following conference series:

Abstract

An algorithm’s parameter setting often affects its ability to solve a given problem, e.g., population-size, mutation-rate or crossover-rate of an evolutionary algorithm. Furthermore, some parameters have to be adjusted dynamically, such as lowering the mutation-strength over time. While hand-crafted heuristics offer a way to fine-tune and dynamically configure these parameters, their design is tedious, time-consuming and typically involves analyzing the algorithm’s behavior on simple problems that may not be representative for those that arise in practice. In this paper, we show that formulating dynamic algorithm configuration as a reinforcement learning problem allows us to automatically learn policies that can dynamically configure the mutation step-size parameter of Covariance Matrix Adaptation Evolution Strategy (CMA-ES). We evaluate our approach on a wide range of black-box optimization problems, and show that (i) learning step-size policies has the potential to improve the performance of CMA-ES; (ii) learned step-size policies can outperform the default Cumulative Step-Size Adaptation of CMA-ES; and transferring the policies to (iii) different function classes and to (iv) higher dimensions is also possible.

G. Shala and A. Biedenkapp—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume that the cost function is well-defined such that an optimal policy exists.

  2. 2.

    When such a long history is not available yet, the missing values are filled with zeros.

  3. 3.

    Code and trained policies available at https://github.com/automl/LTO-CMA.

  4. 4.

    https://ml.informatik.uni-freiburg.de/papers/20-PPSN-LTO-CMA.pdf.

  5. 5.

    Estimates \(\ge 0.64\) \(\implies \) our learned policy significantly outperformed CSA (\(\alpha \,{=}\,0.05\)).

  6. 6.

    The learned policies outperform CSA on anytime performance as shown in the Appendix, but CSA is better in terms of end objective values.

References

  1. Adriaensen, S., Nowé, A.: Towards a white box approach to automated algorithm design. In: Kambhampati, S. (ed.) Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 554–560 (2016)

    Google Scholar 

  2. Aleti, A., Moser, I.: A systematic literature review of adaptive parameter control methods for evolutionary algorithms. ACM Comput. Surv. 49(3), 56:1–56:35 (2016)

    Article  Google Scholar 

  3. Andersson, M., Bandaru, S., Ng, A.H.: Tuning of multiple parameter sets in evolutionary algorithms. In: 2016 Proceedings of the Genetic and Evolutionary Computation Conference, pp. 533–540 (2016)

    Google Scholar 

  4. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Proceedings of the 30th International Conference on Advances in Neural Information Processing Systems (NeurIPS 2016), pp. 3981–3989 (2016)

    Google Scholar 

  5. Ansótegui, C., Malitsky, Y., Sellmann, M.: MaxSAT by improved instance-specific algorithm configuration. In: Brodley, C., Stone, P. (eds.) Proceedings of the Twenty-Eighth National Conference on Artificial Intelligence (AAAI 2014), pp. 2594–2600. AAAI Press (2014)

    Google Scholar 

  6. Ansótegui, C., Pon, J., Sellmann, M., Tierney, K.: Reactive dialectic search portfolios for MaxSAT. In: Singh, S., Markovitch, S. (eds.) Proceedings of the Conference on Artificial Intelligence (AAAI 2017). AAAI Press (2017)

    Google Scholar 

  7. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_14

    Chapter  Google Scholar 

  8. Battiti, R., Campigotto, P.: An investigation of reinforcement learning for reactive search optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 131–160. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_6

    Chapter  Google Scholar 

  9. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization, vol. 45. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-09624-7

    Book  MATH  Google Scholar 

  10. Biedenkapp, A., Bozkurt, H.F., Eimer, T., Hutter, F., Lindauer, M.: Dynamic algorithm configuration: foundation of a new meta-algorithmic framework. In: Lang, J., Giacomo, G.D., Dilkina, B., Milano, M. (eds.) Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI 2020), June 2020

    Google Scholar 

  11. Cao, Y., Chen, T., Wang, Z., Shen, Y.: Learning to optimize in swarms. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, (NeurIPS 2019), pp. 15018–15028 (2019)

    Google Scholar 

  12. Chen, F., Gao, Y., Chen, Z., Chen, S.: SCGA: controlling genetic algorithms with sarsa (0). In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC 2006), vol. 1, pp. 1177–1183. IEEE (2005)

    Google Scholar 

  13. Chen, Y., et al.: Learning to learn without gradient descent by gradient descent. In: Precup, D., Teh, Y. (eds.) Proceedings of the 34th International Conference on Machine Learning (ICML 2017), vol. 70, pp. 748–756. Proceedings of Machine Learning Research (2017)

    Google Scholar 

  14. Daniel, C., Taylor, J., Nowozin, S.: Learning step size controllers for robust neural network training. In: Schuurmans, D., Wellman, M. (eds.) Proceedings of the Thirtieth National Conference on Artificial Intelligence (AAAI 2016). AAAI Press (2016)

    Google Scholar 

  15. Eiben, A.E., Horvath, M., Kowalczyk, W., Schut, M.C.: Reinforcement learning for online control of evolutionary algorithms. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 151–160. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69868-5_10

    Chapter  Google Scholar 

  16. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y. (eds.) Proceedings of the 34th International Conference on Machine Learning (ICML 2017), vol. 70, pp. 1126–1135. Proceedings of Machine Learning Research (2017)

    Google Scholar 

  17. Fuks, L., Awad, N., Hutter, F., Lindauer, M.: An evolution strategy with progressive episode lengths for playing games. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pp. 1234–1240. ijcai.org (2019)

    Google Scholar 

  18. Di Gaspero, L., Urli, T.: Evaluation of a family of reinforcement learning cross-domain optimization heuristics. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 384–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_32

    Chapter  Google Scholar 

  19. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192, pp. 75–102. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1_4

    Chapter  Google Scholar 

  20. Hansen, N.: CMA-ES with two-point step-size adaptation. arXiv:0805.0231 [cs.NE] (2008)

  21. Hansen, N.: The CMA evolution strategy: a tutorial. arXiv:1604.00772v1 [cs.LG] (2016)

  22. Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on GitHub. Zenodo, February 2019. https://doi.org/10.5281/zenodo.2559634

  23. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. Research report RR-6829, INRIA (2009)

    Google Scholar 

  24. Hansen, N., Ostermeier, A.: Convergence properties of evolution strategies with the derandomized covariance matrix adaptation: the (\(\mu /\mu _{I}\),\(\lambda \))-CMA-ES. In: Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing, pp. 650–654 (1997)

    Google Scholar 

  25. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)

    Article  Google Scholar 

  26. Hoos, H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

    Article  Google Scholar 

  27. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed integer programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-0_23

    Chapter  Google Scholar 

  28. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  29. Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: The configurable SAT solver challenge (CSSC). Artif. Intell. 243, 1–25 (2017)

    Article  MathSciNet  Google Scholar 

  30. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15, 1–28 (2001)

    Article  Google Scholar 

  31. Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: The 2003 Congress on Evolutionary Computation. CEC 2003, vol. 4, pp. 2588–2595. IEEE (2003)

    Google Scholar 

  32. Kadioglu, S., Sellmann, M., Wagner, M.: Learning a reactive restart strategy to improve stochastic search. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 109–123. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69404-7_8

    Chapter  Google Scholar 

  33. Karafotias, G., Eiben, A., Hoogendoorn, M.: Generic parameter control with reinforcement learning. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1319–1326 (2014)

    Google Scholar 

  34. Karafotias, G., Hoogendoorn, M., Eiben, Á.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

    Article  Google Scholar 

  35. Karafotias, G., Smit, S.K., Eiben, A.E.: A generic approach to parameter control. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 366–375. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29178-4_37

    Chapter  Google Scholar 

  36. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR 2015) (2015). Published online: iclr.cc

  37. Levine, S., Abbeel, P.: Learning neural network policies with guided policy search under unknown dynamics. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Proceedings of the 28th International Conference on Advances in Neural Information Processing Systems (NeurIPS 2014), pp. 1071–1079 (2014)

    Google Scholar 

  38. Levine, S., Koltun, V.: Guided policy search. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International Conference on Machine Learning (ICML 2013), pp. 1–9. Omnipress (2013)

    Google Scholar 

  39. Li, K., Malik, J.: Learning to optimize. In: Proceedings of the International Conference on Learning Representations (ICLR 2017) (2017). Published online: iclr.cc

  40. Lindauer, M., Eggensperger, K., Feurer, M., Falkner, S., Biedenkapp, A., Hutter, F.: SMAC v3: Algorithm configuration in Python (2017). https://github.com/automl/SMAC3

  41. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: Proceedings of the International Conference on Learning Representations (ICLR 2019) (2019). Published online: iclr.cc

  42. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical report, IRIDIA, Université Libre de Bruxelles, Belgium (2011). http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

  43. López-Ibáñez, M., Stützle, T.: Automatic configuration of multi-objective ACO algorithms. ANTS 2010. LNCS, vol. 6234, pp. 95–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15461-4_9

    Chapter  Google Scholar 

  44. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter optimization through reversible learning. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), vol. 37, pp. 2113–2122. Omnipress (2015)

    Google Scholar 

  45. Muller, S., Schraudolph, N., Koumoutsakos, P.: Step size adaptation in evolution strategies using reinforcement learning. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No. 02TH8600), vol. 1, pp. 151–156. IEEE (2002)

    Google Scholar 

  46. Pettinger, J., Everson, R.: Controlling genetic algorithms with reinforcement learning. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, pp. 692–692 (2002)

    Google Scholar 

  47. van Rijn, S., Doerr, C., Bäck, T.: Towards an adaptive CMA-ES configurator. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 54–65. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_5

    Chapter  Google Scholar 

  48. van Rijn, S., Wang, H., van Leeuwen, M., Bäck, T.: Evolving the structure of evolution strategies. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)

    Google Scholar 

  49. Sakurai, Y., Takada, K., Kawabe, T., Tsuruta, S.: A method to control parameters of evolutionary algorithms by using reinforcement learning. In: Proceedings of the Sixth International Conference on Signal-Image Technology and Internet Based Systems, pp. 74–79. IEEE (2010)

    Google Scholar 

  50. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning. arXiv:1703.03864 [stat.ML] (2017)

  51. Sharma, M., Komninos, A., López-Ibáñez, M., Kazakov, D.: Deep reinforcement learning based parameter control in differential evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 709–717 (2019)

    Google Scholar 

  52. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  53. Thrun, S., Pratt, L.: Learning to Learn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  54. Vermetten, D., van Rijn, S., Bäck, T., Doerr, C.: Online selection of CMA-ES variants. In: Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 951–959. ACM (2019)

    Google Scholar 

  55. Xu, Z., Dai, A.M., Kemp, J., Metz, L.: Learning an adaptive learning rate schedule. arXiv:1909.09712 [cs.LG] (2019)

  56. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: Proceedings of the International Conference on Learning Representations (ICLR 2017) (2017). Published online: iclr.cc

Download references

Acknowledgements

The authors acknowledge funding by the Robert Bosch GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Biedenkapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., Hutter, F. (2020). Learning Step-Size Adaptation in CMA-ES. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12269. Springer, Cham. https://doi.org/10.1007/978-3-030-58112-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58112-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58111-4

  • Online ISBN: 978-3-030-58112-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics