Abstract
In recent years, leakage-resilient cryptography—the design of cryptographic protocols resilient to bounded leakage of honest players’ secrets—has received significant attention. A major limitation of known provably-secure constructions (based on polynomial hardness assumptions) is that they require the secrets to have sufficient actual (i.e., information-theoretic), as opposed to comptutational, min-entropy even after the leakage.
In this work, we present barriers to provably-secure constructions beyond the “information-theoretic barrier”: Assume the existence of collision-resistant hash functions. Then, no \(\mathcal{NP}\) search problem with \((2^{n^{\epsilon }})\)-bounded number of witnesses can be proven (even worst-case) hard in the presence of \(O(n^{\epsilon })\) bits of computationally-efficient leakage of the witness, using a black-box reduction to any O(1)-round assumption. In particular, this implies that \(O(n^{\epsilon })\)-leakage resilient injective one-way functions, and more generally, one-way functions with at most \(2^{n^{\epsilon }}\) pre-images, cannot be based on any “standard” complexity assumption using a black-box reduction.
R. Pass—Supported in part by a JP Morgan Faculty Award, NSF Award SATC-1704788, NSF Award RI-1703846, and AFOSR Award FA9550-18-1-0267. This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As far as we know, this was first observed by Ramarathan Venkatesan in 2005 (in personal communication).
References
Aggarwal, D., Maurer, U.: The leakage-resilience limit of a computational problem is equal to its unpredictability entropy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 686–701. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_37
Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28
Alwen, J., Dodis, Y., Wichs, D.: Survey: leakage resilience and the bounded retrieval model. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 1–18. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14496-7_1
Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, May 5–8, 1991, pp. 21–31. ACM (1991)
Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS 2002, pp. 116–125 (2001)
Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_22
Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117
Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)
Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_27
Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, Philadelphia, PA, USA, October 25–28, 2008, pp. 293–302 (2008)
Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: STOC, pp. 210–217 (1987)
Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)
Goldreich, O.: Foundations of Cryptography – Basic Tools. Cambridge University Press (2001)
Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York (1987)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)
Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryption. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_13
Halevi, S., Myers, S., Rackoff, C.: On seed-incompressible functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 19–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_2
Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27
Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_41
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC 2002, pp. 723–732 (1992)
Komargodski, I.: Leakage resilient one-way functions: the auxiliary-input setting. Theor. Comput. Sci. 746, 6–18 (2018)
Marcedone, A., Pass, R., Shelat, A.: Bounded KDM security from iO and OWF. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 571–586. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_30
Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 429–436. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9_35
Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16
Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6
Nielsen, J.B., Venturi, D., Zottarel, A.: On the connection between leakage tolerance and adaptive security. IACR Cryptology ePrint Archive, 2014:517 (2014)
Ostrovsky, R., Persiano, G., Visconti, I.: Impossibility of black-box simulation against leakage attacks. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 130–149. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_7
Pass, R.: Limits of provable security from standard assumptions. In: STOC, pp. 109–118 (2011)
Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC 1990, pp. 387–394 (1990)
Rothblum, G.N., Vadhan, S.P.: Are PCPS inherent in efficient arguments? Comput. Complex. 19(2), 265–304 (2010)
Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In: Innovations in Theoretical Computer Science, ITCS 2013, Berkeley, CA, USA, January 9–12, 2013, pp. 111–126 (2013)
Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science (FOCS), pp. 162–167. IEEE Computer Society (1986)
Acknowledgments
We are very grateful to the SCN anonymous reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Pass, R. (2020). Unprovability of Leakage-Resilient Cryptography Beyond the Information-Theoretic Limit. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-57990-6_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57989-0
Online ISBN: 978-3-030-57990-6
eBook Packages: Computer ScienceComputer Science (R0)