Unprovability of Leakage-Resilient Cryptography Beyond the Information-Theoretic Limit | SpringerLink
Skip to main content

Unprovability of Leakage-Resilient Cryptography Beyond the Information-Theoretic Limit

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12238))

Included in the following conference series:

  • 728 Accesses

Abstract

In recent years, leakage-resilient cryptography—the design of cryptographic protocols resilient to bounded leakage of honest players’ secrets—has received significant attention. A major limitation of known provably-secure constructions (based on polynomial hardness assumptions) is that they require the secrets to have sufficient actual (i.e., information-theoretic), as opposed to comptutational, min-entropy even after the leakage.

In this work, we present barriers to provably-secure constructions beyond the “information-theoretic barrier”: Assume the existence of collision-resistant hash functions. Then, no \(\mathcal{NP}\) search problem with \((2^{n^{\epsilon }})\)-bounded number of witnesses can be proven (even worst-case) hard in the presence of \(O(n^{\epsilon })\) bits of computationally-efficient leakage of the witness, using a black-box reduction to any O(1)-round assumption. In particular, this implies that \(O(n^{\epsilon })\)-leakage resilient injective one-way functions, and more generally, one-way functions with at most \(2^{n^{\epsilon }}\) pre-images, cannot be based on any “standard” complexity assumption using a black-box reduction.

R. Pass—Supported in part by a JP Morgan Faculty Award, NSF Award SATC-1704788, NSF Award RI-1703846, and AFOSR Award FA9550-18-1-0267. This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As far as we know, this was first observed by Ramarathan Venkatesan in 2005 (in personal communication).

References

  1. Aggarwal, D., Maurer, U.: The leakage-resilience limit of a computational problem is equal to its unpredictability entropy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 686–701. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_37

    Chapter  Google Scholar 

  2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  MATH  Google Scholar 

  3. Alwen, J., Dodis, Y., Wichs, D.: Survey: leakage resilience and the bounded retrieval model. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp. 1–18. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14496-7_1

    Chapter  Google Scholar 

  4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, New Orleans, Louisiana, USA, May 5–8, 1991, pp. 21–31. ACM (1991)

    Google Scholar 

  5. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS 2002, pp. 116–125 (2001)

    Google Scholar 

  6. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_22

    Chapter  Google Scholar 

  7. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117

    Chapter  Google Scholar 

  8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)

    Article  MathSciNet  Google Scholar 

  9. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  Google Scholar 

  10. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  11. Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_27

    Chapter  Google Scholar 

  12. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, Philadelphia, PA, USA, October 25–28, 2008, pp. 293–302 (2008)

    Google Scholar 

  13. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: STOC, pp. 210–217 (1987)

    Google Scholar 

  14. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)

    Article  MathSciNet  Google Scholar 

  15. Goldreich, O.: Foundations of Cryptography – Basic Tools. Cambridge University Press (2001)

    Google Scholar 

  16. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)

    Article  MathSciNet  Google Scholar 

  17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York (1987)

    Google Scholar 

  18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  19. Haitner, I., Holenstein, T.: On the (im)possibility of key dependent encryption. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_13

    Chapter  MATH  Google Scholar 

  20. Halevi, S., Myers, S., Rackoff, C.: On seed-incompressible functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 19–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_2

    Chapter  Google Scholar 

  21. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  22. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_41

    Chapter  Google Scholar 

  23. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC 2002, pp. 723–732 (1992)

    Google Scholar 

  24. Komargodski, I.: Leakage resilient one-way functions: the auxiliary-input setting. Theor. Comput. Sci. 746, 6–18 (2018)

    Article  MathSciNet  Google Scholar 

  25. Marcedone, A., Pass, R., Shelat, A.: Bounded KDM security from iO and OWF. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 571–586. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9_30

    Chapter  MATH  Google Scholar 

  26. Maurer, U.M.: Factoring with an oracle. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 429–436. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9_35

    Chapter  Google Scholar 

  27. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_16

    Chapter  MATH  Google Scholar 

  28. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6

    Chapter  Google Scholar 

  29. Nielsen, J.B., Venturi, D., Zottarel, A.: On the connection between leakage tolerance and adaptive security. IACR Cryptology ePrint Archive, 2014:517 (2014)

    Google Scholar 

  30. Ostrovsky, R., Persiano, G., Visconti, I.: Impossibility of black-box simulation against leakage attacks. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 130–149. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_7

    Chapter  Google Scholar 

  31. Pass, R.: Limits of provable security from standard assumptions. In: STOC, pp. 109–118 (2011)

    Google Scholar 

  32. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC 1990, pp. 387–394 (1990)

    Google Scholar 

  33. Rothblum, G.N., Vadhan, S.P.: Are PCPS inherent in efficient arguments? Comput. Complex. 19(2), 265–304 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In: Innovations in Theoretical Computer Science, ITCS 2013, Berkeley, CA, USA, January 9–12, 2013, pp. 111–126 (2013)

    Google Scholar 

  35. Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science (FOCS), pp. 162–167. IEEE Computer Society (1986)

    Google Scholar 

Download references

Acknowledgments

We are very grateful to the SCN anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Pass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pass, R. (2020). Unprovability of Leakage-Resilient Cryptography Beyond the Information-Theoretic Limit. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57990-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57989-0

  • Online ISBN: 978-3-030-57990-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics