A Formalism Unifying Defeasible Logics and Repair Semantics for Existential Rules | SpringerLink
Skip to main content

A Formalism Unifying Defeasible Logics and Repair Semantics for Existential Rules

  • Conference paper
  • First Online:
Ontologies and Concepts in Mind and Machine (ICCS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12277))

Included in the following conference series:

  • 405 Accesses

Abstract

Two prominent ways of handling inconsistency provided by the state of the art are repair semantics and Defeasible Logics. In this paper we place ourselves in the setting of inconsistent knowledge bases expressed using existential rules and investigate how these approaches relate to each other. We run an experiment that checks how human intuitions align with those of either repair-based or defeasible methods and propose a new semantics combining both worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It should be noted that this restriction does not lead to a loss of expressive power, as [2] shows.

  2. 2.

    Situations and detailed results are available at https://www.dropbox.com/s/4wkblgdx7hzj7s8/situations.pdf.

References

  1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible reasoning logics and its implementation. In: Proceedings of the 14th European Conference on Artificial Intelligence, pp. 459–463 (2000)

    Google Scholar 

  2. Bacchus, F., Chen, X., van Beek, P., Walsh, T.: Binary vs. non-binary constraints. Artif. Intell. 140(1/2), 1–37 (2002). https://doi.org/10.1016/S0004-3702(02)00210-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Baget, J.F., Garreau, F., Mugnier, M.L., Rocher, S.: Extending acyclicity notions for existential rules. In: ECAI, pp. 39–44 (2014)

    Google Scholar 

  4. Baget, J.F., Garreau, F., Mugnier, M.L., Rocher, S.: Revisiting chase termination for existential rules and their extension to nonmonotonic negation. arXiv preprint arXiv:1405.1071 (2014)

  5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

    Article  MathSciNet  Google Scholar 

  6. Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection inference for inconsistency-tolerant query answering. In: IJCAI, pp. 3684–3690 (2016)

    Google Scholar 

  7. Billington, D.: Defeasible logic is stable. J. Log. Comput. 3(4), 379–400 (1993)

    Article  MathSciNet  Google Scholar 

  8. Billington, D., Antoniou, G., Governatori, G., Maher, M.: An inclusion theorem for defeasible logics. ACM Trans. Comput. Log. (TOCL) 12(1), 6 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. Web Semant. Sci. Serv. Agents World Wide Web 14, 57–83 (2012)

    Article  Google Scholar 

  10. Deagustini, C.A., Martinez, M.V., Falappa, M.A., Simari, G.R.: On the influence of incoherence in inconsistency-tolerant semantics for Datalog+-. In: JOWO@ IJCAI (2015)

    Google Scholar 

  11. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies, negations and changes in ontologies. In: Proceedings of the National Conference on Artificial Intelligence, vol. 21, p. 1295. AAAI Press; MIT Press, Menlo Park, Cambridge, London (1999, 2006)

    Google Scholar 

  12. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation semantics for defeasible logic. J. Log. Comput. 14(5), 675–702 (2004). https://doi.org/10.1093/logcom/14.5.675.1

    Article  MathSciNet  MATH  Google Scholar 

  13. Hecham, A., Bisquert, P., Croitoru, M.: On a flexible representation of defeasible reasoning variants. In: Proceedings of the 17th Conference on Autonomous Agents and MultiAgent Systems, pp. 1123–1131 (2018)

    Google Scholar 

  14. Hecham, A., Croitoru, M., Bisquert, P.: DAMN: defeasible reasoning tool for multi-agent reasoning. In: AAAI 2020–34th AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, New York, United States, February 2020. https://hal-lirmm.ccsd.cnrs.fr/lirmm-02393877

  15. Horty, J.F., Thomason, R.H., Touretzky, D.S.: A skeptical theory of inheritance in nonmonotonic semantic networks. Artif. Intell. 42(2–3), 311–348 (1990)

    Article  MathSciNet  Google Scholar 

  16. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15918-3_9

    Chapter  Google Scholar 

  17. Marnette, B.: Generalized schema-mappings: from termination to tractability. In: Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 13–22. ACM (2009)

    Google Scholar 

  18. Nute, D.: Defeasible reasoning: a philosophical analysis in prolog. In: Fetzer, J.H. (ed.) Aspects of Artificial Intelligence. Studies in Cognitive Systems, vol. 1, pp. 251–288. Springer, Dordrecht (1988). https://doi.org/10.1007/978-94-009-2699-8_9

    Chapter  Google Scholar 

  19. Rocher, S.: Querying existential rule knowledge bases: decidability and complexity. Ph.D. thesis, Université de Montpellier (2016)

    Google Scholar 

Download references

Acknowledgement

We would like to thanks the anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bisquert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hecham, A., Bisquert, P., Croitoru, M. (2020). A Formalism Unifying Defeasible Logics and Repair Semantics for Existential Rules. In: Alam, M., Braun, T., Yun, B. (eds) Ontologies and Concepts in Mind and Machine. ICCS 2020. Lecture Notes in Computer Science(), vol 12277. Springer, Cham. https://doi.org/10.1007/978-3-030-57855-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57855-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57854-1

  • Online ISBN: 978-3-030-57855-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics