Interdisciplinary Aspects of Cognition | SpringerLink
Skip to main content

Interdisciplinary Aspects of Cognition

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12226))

Included in the following conference series:

  • 403 Accesses

Abstract

This position paper analyses the multidisciplinarity of cognitive research and its challenges from three perspective: the foundations of cognitive science, which draw from logic and neuroscience and their interconnections in studying human logic; computation as a means to identify mathematical patterns in human cognition, represent them symbolically and use such representations in computer emulations of human cognitive activities and possibly verify properties of such activities; education, devising and implementing learning models that exploit as well as address human cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, J.R.: The Architecture of Cognition. Psychology Press (1983)

    Google Scholar 

  2. Bellucci, F., Chiffi, D., Pietarinen, A.-V.: Assertive graphs. J. Appl. Non Cl. Log. 28(1), 72–91 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellucci, F., Pietarinen, A.-V.: Two dogmas of diagrammatic reasoning: a view from existential graphs. In: Hull, K., Atkins, R. (eds.) Peirce on Perception and Reasoning: From Icons to Logic, pp. 174–196. Routledge, Abingdon (2017)

    Google Scholar 

  4. Birbaumer, N., et al.: A spelling device for the paralysed. Nature 398(6725), 297 (1999)

    Article  Google Scholar 

  5. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.-R., Curio, G.: The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2), 539–550 (2007)

    Article  Google Scholar 

  6. Bobrova, A., Pietarinen, A.-V.: Logical guidance and the dual-process theories of reasoning. In: Shafiei, M., Pietarinen, A.-V. (eds.) Peirce and Husserl: Mutual Insights on Logic, Mathematics and Cognition. Springer, New York (2019)

    MATH  Google Scholar 

  7. Brunner, P., Ritaccio, A.L., Emrich, J.F., Bischof, H., Schalk, G.: Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Front. Neurosci. 5, 5 (2011)

    Article  Google Scholar 

  8. Cerone, A.: Closure and attention activation in human automatic behaviour: a framework for the formal analysis of interactive systems. In: Proceedings of FMIS 2011. Electronic Communications of the EASST, vol. 45 (2011)

    Google Scholar 

  9. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of interactive systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8_20

    Chapter  Google Scholar 

  10. Cerone, A.: Towards a cognitive architecture for the formal analysis of human behaviour and learning. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 216–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_17

    Chapter  Google Scholar 

  11. Cerone, A., Elbegbayan, N.:. Model-checking driven design of interactive systems. In: Proceedings of FMIS 2006. Electronic Notes in Theoretical Computer Science, vol. 183, pp. 3–20. Elevier (2007)

    Google Scholar 

  12. Champagne, M., Pietarinen, A.-V.: Images as arguments? Towards a clearer picture of the role of pictures in arguments. Argumentation (2019, in Press)

    Google Scholar 

  13. Chen, Y., et al.: A high-security EEG-based login system with RSVP stimuli and dry electrodes. IEEE Trans. Inf. Forensics Secur. 11(12), 2635–2647 (2016)

    Article  Google Scholar 

  14. Chiffi, D., Pietarinen, A.-V.: Abductive inference within a pragmatic framework. Synthese (2018). https://doi.org/10.1007/s11229-018-1824-6

    Article  Google Scholar 

  15. Fazli, S., Dähne, S., Samek, W., Bießmann, F., Müller, K.-R.: Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based brain-computer interfaces. Proc. IEEE 103(6), 891–906 (2015)

    Article  Google Scholar 

  16. Fazli, S., et al.: Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59(1), 519–529 (2012)

    Article  Google Scholar 

  17. Fazli, S., Popescu, F., Danóczy, M., Blankertz, B., Müller, K.-R., Grozea, C.: Subject-independent mental state classification in single trials. Neural Netw. 22(9), 1305–1312 (2009)

    Article  Google Scholar 

  18. Gabbay, D., Woods, J.: The Reach of Abduction. A Practical Logic of Cognitive Systems, vol. 2. North-Holland, Amsterdam (2005)

    MATH  Google Scholar 

  19. Geeraerts, D., Kristiansen, G., Peirsman, Y. (eds.): Advances in Cognitive Sociolinguistics, vol. 45. Walter de Gruyter, Berlin (2010)

    Google Scholar 

  20. Giere, R.N.: Explaining Science: A Cognitive Approach. University of Chicago Press, Chicago (1988)

    Book  Google Scholar 

  21. Haufe, S., Treder, M.S., Gugler, M.F., Sagebaum, M., Curio, G., Blankertz, B.: EEG potentials predict upcoming emergency brakings during simulated driving. J. Neural Eng. 8(5), 056001 (2011)

    Article  Google Scholar 

  22. Haywood, H.C.: Thinking in, around, and about the curriculum: the role of cognitive education. Int. J. Disabil. Dev. Educ. 51, 231–252 (2004)

    Article  Google Scholar 

  23. Heimgärtner, R.: Ultural differences in human computer interaction: results from two online surveys. In: Open Innovation. Proceedings of 10th International Symposium for Information Science, pp. 145–157 (2007)

    Google Scholar 

  24. Hestenes, D.: Modeling theory for math and science education. In: Lesh, R., Galbraith, P., Haines, C., Hurford, A. (eds.) Modeling Students’ Mathematical Modeling Competencies, pp. 13–41. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-0561-1_3

    Chapter  Google Scholar 

  25. Hofstadter, D.R.: Gödel, Escher, Bach: and Eternal Golden Braid, 20th-Annuversary edn. Penguin, London (2000)

    Google Scholar 

  26. Hofstadter, D.R.: I Am a Strange Loop. Basic Books, New York (2007)

    MATH  Google Scholar 

  27. Iacovides, I., Blandford, A., Cox, A., Back, J.: How external and internal resources influence user action: the case of infusion devices. Cogn. Technol. Work. 18(4), 793–805 (2016)

    Article  Google Scholar 

  28. Issayeva, J., Pietarinen, A.-V.: The heterogenous and dynamic nature of mental images: an empirical study. Belgrade J. Philos. 31, 57–83 (2018)

    Article  Google Scholar 

  29. Jackson, J., Dukerich, L., Hestenes, D.: Modeling instruction: an effective model for science education. Sci. Educ. 17, 10–17 (2008)

    Google Scholar 

  30. Johnson, C.: Reasoning about human error and system failure for accident analysis. In: Proceedings of INTERACT 1997, pp. 331–338. Chapman and Hall (1997)

    Google Scholar 

  31. Kirwan, B.: Human reliability assessment. In: Evaluation of Human Work, Chap. 28. Taylor and Francis (1990)

    Google Scholar 

  32. Kokotsaki, D., Menzies, V., Wiggins, A.: Project-based learning: a review of the literature. Improv. Sch. 19, 267–277 (2016)

    Article  Google Scholar 

  33. Kotseruba, I., Tsotsos, J.K.: 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif. Intell. Rev. (2018). https://doi.org/10.1007/s10462-018-9646-y

    Article  Google Scholar 

  34. Lee, J.H., Ryu, J., Jolesz, F.A., Cho, Z.H., Yoo, S.S.: Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci. Lett. 450, 1–6 (2009)

    Article  Google Scholar 

  35. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Boston (1995)

    Google Scholar 

  36. Ma, M., Pietarinen, A.-V.: A weakening of alpha graphs: quasi-boolean algebras. In: Chapman, P., Stapleton, G., Moktefi, A., Perez-Kriz, S., Bellucci, F. (eds.) Diagrams 2018. LNCS (LNAI), vol. 10871, pp. 549–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91376-6_50

    Chapter  Google Scholar 

  37. Mach, C.: Knowledge and Error. Reidel, London (1905). English translation, 1976

    Google Scholar 

  38. Malone, K.L.: Correlations among knowledge structures, force concept inventory, and problem-solving behaviors. Phys. Rev. Spec. Top. Phys. Educ. Res. 4(2), 020107 (2008)

    Article  Google Scholar 

  39. Malone, K.L., Schuchardt, A.: Improving students’ performance through the use of simulations and modelling: the case of population growth. In: Lane, H., Zvacek, S., Uhomoibhi, J. (eds.) Proceedings of the 11th International Conference on Computer Supported Education, vol. 1, pp. 220–230. SCITEPRES, Setúbal (2019)

    Google Scholar 

  40. Malone, K.L., Schuchardt, A.M., Sabree, Z.: Models and modeling in evolution. In: Harms, U., Reiss, M.J. (eds.) Evolution Education Re-considered, pp. 207–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14698-6_12

    Chapter  Google Scholar 

  41. Malone, K.L., Schunn, C.D., Schuchardt, A.M.: Improving conceptual understanding and representation skills through excel-based modeling. J. Sci. Educ. Technol. 27, 30–44 (2018)

    Article  Google Scholar 

  42. Nersessian, N.J.: The cognitive basis of model-based reasoning. In: The Cognitive Basis of Science, pp. 133–153. Cambridge University Press (2002)

    Google Scholar 

  43. Online Oxford Dictionary. https://www.lexico.com/en/definition/cognition

  44. Passmore, C., Gouvea, J.S., Giere, R.: Models in science and in learning science: focusing scientific practice on sense-making. In: Matthews, M.R. (ed.) International Handbook of Research in History, Philosophy and Science Teaching, pp. 1171–1202. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7654-8_36

    Chapter  Google Scholar 

  45. Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1983)

    Google Scholar 

  46. Pietarinen, A.-V.: Peirce and the logic of image. Semiotica 192, 251–261 (2011)

    Google Scholar 

  47. Pietarinen, A.-V.: Conjectures and abductive reasoning in games. J. Appl. Log. IfCoLog J. Log. Appl. 5(5), 1121–1144 (2018)

    MathSciNet  Google Scholar 

  48. Reason, J.: Human Error. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  49. Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.: Cognitive tutor: applied research in mathematics education. Psychon. Bull. Rev. 14, 249–255 (2007)

    Article  Google Scholar 

  50. Samsonovich, A.V.: Towards a unified catalog of implemented cognitive architectures. In: Biologically Inspired Cognitive Architectures (BICA 2010), pp. 195–244. IOS Press (2010)

    Google Scholar 

  51. Schultze-Kraft, M., et al.: The point of no return in vetoing self-initiated movements. Proc. Natl. Acad. Sci. 113(4), 1080–1085 (2016)

    Article  Google Scholar 

  52. Stammen, A., Malone, K., Irving, K.: Effects of modeling instruction professional development on biology teachers’ scientific reasoning skills. Educ. Sci. Spec. Issue Biol. Educ. (8) (2018). https://doi.org/10.3390/educsci8030119

  53. Su, L., Bowman, H., Barnard, P., Wyble, B.: Process algebraic model of attentional capture and human electrophysiology in interactive systems. Form. Asp. Comput. 21(6), 512–539 (2009)

    Article  MATH  Google Scholar 

  54. Talkhabi, M., Nouri, A.: Foundations of cognitive education: issues and opportunities. Procedia Soc. Behav. Sci. 32, 385–390 (2012)

    Article  Google Scholar 

  55. Tan, J.C., Chapman, A.: Project-based Learning for Academically-able Students: Hwa Chong Institution in Singapore. Springer, Singapore (2016). https://doi.org/10.1007/978-94-6300-732-0

    Book  Google Scholar 

  56. Tsubone, T., Muroga, T., Wada, Y.: Application to robot control using brain function measurement by near-infrared spectroscopy. In: International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 5342–5345 (2007)

    Google Scholar 

  57. Vidal, J.J.: Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)

    Article  MathSciNet  Google Scholar 

  58. Waldert, S., et al.: Hand movement direction decoded from MEG and EEG. J. Neurosci. 28, 1000–1008 (2008)

    Article  Google Scholar 

  59. Walker, A.E., Leary, H., Hmelo-Silver, C.E., Ertmer, P.A. (eds.): Essential Readings in Problem-Based Learning. Purdue University Press, West Lafayette (2015)

    Google Scholar 

  60. Woods, J.: Reorienting the logic of abduction. In: Magnani, L., Bertolotti, T. (eds.) Springer Handbook of Model-Based Science. SH, pp. 137–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-30526-4_6

    Chapter  Google Scholar 

  61. Xiang, L., Passmore, C.: A framework for model-based inquiry through agent-based programming. J. Sci. Educ. Technol. 24, 311–329 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the four anonymous reviewers whose comments and suggestions greatly contributed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cerone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cerone, A., Fazli, S., Malone, K.L., Pietarinen, AV. (2020). Interdisciplinary Aspects of Cognition. In: Camara, J., Steffen, M. (eds) Software Engineering and Formal Methods. SEFM 2019. Lecture Notes in Computer Science(), vol 12226. Springer, Cham. https://doi.org/10.1007/978-3-030-57506-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57506-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57505-2

  • Online ISBN: 978-3-030-57506-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics