Abstract
This work proposes a solution method for tracking procedures for Unmanned Aerial Vehicles (UAVs). The proposed controller is based on the dynamics of the error obtained from the kinematic model of the UAV, i.e., on linearized error behavior during the tracking task. For the correction of the trajectory tracking error, an optimal controller is used that provides a gain to compensate the errors and disturbances during the task proposed by using LQR algorithm. The experimental results are presented with several weight options in the proposed functional cost for analysis the UAV behavior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Obradovic, R., Vasiljevic, I., Kovacevic, D., Marinkovic, Z., Farkas, R.: Drone aided inspection during bridge construction. In: 2019 Zooming Innovation in Consumer Technologies Conference (ZINC) (2019). https://doi.org/10.1109/zinc.2019.8769345
Castillo-Zamora, J.J., Escareno, J., Boussaada, I., Labbani, O., Camarillo, K.: Modeling and control of an aerial multi-cargo system: robust acquiring and transport operations. In: 2019 18th European Control Conference (ECC). Naples, Italy, pp. 1708–1713 (2019)
Acosta, A.G., et al.: E-tourism: governmental planning and management mechanism. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10850, pp. 162–170. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95270-3_11
Elfes, A., S., et al.: A semi-autonomous robotic airship for environmental monitoring missions. In: Proceedings 1998 IEEE International Conference on Robotics and Automation. vol.4, Leuven, Belgium, pp. 3449–3455 (1998). (Cat. No.98CH36146)
Andaluz, Víctor H., et al.: Autonomous monitoring of air quality through an unmanned aerial vehicle. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds.) IEA/AIE 2019. LNCS (LNAI), vol. 11606, pp. 146–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22999-3_14
Hang, C., et al.: Three-dimensional fuzzy control of mini quadrotor UAV trajectory tracking under impact of wind disturbance. In: 2016 International Conference on Advanced Mechatronic Systems (ICAMechS) (2016)
Jurado, F., Lopez, S.: Continuous-time decentralized neural control of a quadrotor UAV. In: Artificial Neural Networks for Engineering Applications, pp. 39-53 (2019). https://doi.org/10.1016/b978-0-12-818247-5.00013-7
Pantoja, A., Yela, J.: Nonlinear control of a quadrotor for attitude stabilization. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC) (2017). https://doi.org/10.1109/ccac.2017.8276467
Andaluz, V.H., Carvajal, C.P., Pérez, J.A., Proaño, L.E.: Kinematic nonlinear control of aerial mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 740–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_66
Andaluz, V., Gallardo, C., Chicaiza, F., Carvajal, C., et al.: Robot nonlinear control for unmanned aerial vehicles’ multitasking. Assembly Autom. 38(5), 645–660 (2018). https://doi.org/10.1108/AA-02-2018-036
Xiong, J., Zhang, G.: Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans. 66, 233–240 (2017). https://doi.org/10.1016/j.isatra.2016.09.019
Mathisen, S., Gryte, K., Johansen, T., Fossen, T.: Non-linear model predictive control for longitudinal and lateral guidance of a small fixed-wing UAV in precision deep stall landing. AIAA Infotech @ Aerospace (2016). https://doi.org/10.2514/6.2016-0512
Santos, M.C.P., Rosales, C.D., Sarapura, J.A., et al.: An adaptive dynamic controller for quadrotor to perform trajectory tracking tasks. J. Intell. Robot. Syst. 93(1), 5–16 (2018). https://doi.org/10.1007/s10846-018-0799-3
Kumar, R., Dechering, M., Pai, A., et al.: Differential flatness based hybrid PID/LQR flight controller for complex trajectory tracking in quadcopter UAVs. In: 2017 IEEE National Aerospace and Electronics Conference (NAECON) (2017). https://doi.org/10.1109/naecon.2017.8268755
Rosales, C., Gandolfo, D., Scaglia, G., Jordan, M., Carelli, R.: Trajectory tracking of a mini four-rotor helicopter in dynamic environments - a linear algebra approach. Robotica 33(8), 1628–1652 (2015)
Chen, Y., Luo, G., Mei, Y., et al.: UAV path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2014). https://doi.org/10.1080/00207721.2014.929191
Peng, H., Li, F., Liu, J., Ju, Z.: A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models. IEEE Trans. Ind. Electron. 67(5), 3819–3829 (2019). https://doi.org/10.1109/TIE.2019.2916390
Cardenas Alzate, P., Velez, G., Mesa, F.: Optimum control using finite time quadratic linear regulator. Contemp. Eng. Sci. 11, 4709–4716 (2018). https://doi.org/10.12988/ces.2018.89516
De Luca, A., Oriolo, G., Vendittelli, M.: Control of wheeled mobile robots: Experimental Overview. 181–226. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-45000-9_8
Acknowledgments
The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia –CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XIII-2019-08; Sistema Colaborativo de Robots Aéreos para Manipular Cargas con Óptimo Consumo de Recursos; also to Universidad de las Fuerzas Armadas ESPE, Grupo de Investigación ARSI, and finally to Instituto de Automática de la Universidad Nacional de San Juan for the support and the theoric knowledge provided for the execution of this work.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Carvajal, C.P., Andaluz, V.H., Roberti, F., Carelli, R. (2020). Optimal Trajectory Tracking Control for a UAV Based on Linearized Dynamic Error. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-55789-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55788-1
Online ISBN: 978-3-030-55789-8
eBook Packages: Computer ScienceComputer Science (R0)