Optimal Trajectory Tracking Control for a UAV Based on Linearized Dynamic Error | SpringerLink
Skip to main content

Optimal Trajectory Tracking Control for a UAV Based on Linearized Dynamic Error

  • Conference paper
  • First Online:
Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices (IEA/AIE 2020)

Abstract

This work proposes a solution method for tracking procedures for Unmanned Aerial Vehicles (UAVs). The proposed controller is based on the dynamics of the error obtained from the kinematic model of the UAV, i.e., on linearized error behavior during the tracking task. For the correction of the trajectory tracking error, an optimal controller is used that provides a gain to compensate the errors and disturbances during the task proposed by using LQR algorithm. The experimental results are presented with several weight options in the proposed functional cost for analysis the UAV behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Obradovic, R., Vasiljevic, I., Kovacevic, D., Marinkovic, Z., Farkas, R.: Drone aided inspection during bridge construction. In: 2019 Zooming Innovation in Consumer Technologies Conference (ZINC) (2019). https://doi.org/10.1109/zinc.2019.8769345

  2. Castillo-Zamora, J.J., Escareno, J., Boussaada, I., Labbani, O., Camarillo, K.: Modeling and control of an aerial multi-cargo system: robust acquiring and transport operations. In:  2019 18th European Control Conference (ECC). Naples, Italy, pp. 1708–1713 (2019)

    Google Scholar 

  3. Acosta, A.G., et al.: E-tourism: governmental planning and management mechanism. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10850, pp. 162–170. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95270-3_11

    Chapter  Google Scholar 

  4. Elfes, A., S., et al.: A semi-autonomous robotic airship for environmental monitoring missions. In: Proceedings 1998 IEEE International Conference on Robotics and Automation. vol.4, Leuven, Belgium, pp. 3449–3455 (1998). (Cat. No.98CH36146)

    Google Scholar 

  5. Andaluz, Víctor H., et al.: Autonomous monitoring of air quality through an unmanned aerial vehicle. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds.) IEA/AIE 2019. LNCS (LNAI), vol. 11606, pp. 146–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22999-3_14

    Chapter  Google Scholar 

  6. Hang, C., et al.: Three-dimensional fuzzy control of mini quadrotor UAV trajectory tracking under impact of wind disturbance. In: 2016 International Conference on Advanced Mechatronic Systems (ICAMechS) (2016)

    Google Scholar 

  7. Jurado, F., Lopez, S.: Continuous-time decentralized neural control of a quadrotor UAV. In: Artificial Neural Networks for Engineering Applications, pp. 39-53 (2019). https://doi.org/10.1016/b978-0-12-818247-5.00013-7

  8. Pantoja, A., Yela, J.: Nonlinear control of a quadrotor for attitude stabilization. In: 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC) (2017). https://doi.org/10.1109/ccac.2017.8276467

  9. Andaluz, V.H., Carvajal, C.P., Pérez, J.A., Proaño, L.E.: Kinematic nonlinear control of aerial mobile manipulators. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 740–749. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_66

    Chapter  Google Scholar 

  10. Andaluz, V., Gallardo, C., Chicaiza, F., Carvajal, C., et al.: Robot nonlinear control for unmanned aerial vehicles’ multitasking. Assembly Autom. 38(5), 645–660 (2018). https://doi.org/10.1108/AA-02-2018-036

    Article  Google Scholar 

  11. Xiong, J., Zhang, G.: Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans. 66, 233–240 (2017). https://doi.org/10.1016/j.isatra.2016.09.019

    Article  Google Scholar 

  12. Mathisen, S., Gryte, K., Johansen, T., Fossen, T.: Non-linear model predictive control for longitudinal and lateral guidance of a small fixed-wing UAV in precision deep stall landing. AIAA Infotech @ Aerospace (2016). https://doi.org/10.2514/6.2016-0512

  13. Santos, M.C.P., Rosales, C.D., Sarapura, J.A., et al.: An adaptive dynamic controller for quadrotor to perform trajectory tracking tasks. J. Intell. Robot. Syst. 93(1), 5–16 (2018). https://doi.org/10.1007/s10846-018-0799-3

    Article  Google Scholar 

  14. Kumar, R., Dechering, M., Pai, A., et al.: Differential flatness based hybrid PID/LQR flight controller for complex trajectory tracking in quadcopter UAVs. In: 2017 IEEE National Aerospace and Electronics Conference (NAECON) (2017). https://doi.org/10.1109/naecon.2017.8268755

  15. Rosales, C., Gandolfo, D., Scaglia, G., Jordan, M., Carelli, R.: Trajectory tracking of a mini four-rotor helicopter in dynamic environments - a linear algebra approach. Robotica 33(8), 1628–1652 (2015)

    Article  Google Scholar 

  16. Chen, Y., Luo, G., Mei, Y., et al.: UAV path planning using artificial potential field method updated by optimal control theory. Int. J. Syst. Sci. 47(6), 1407–1420 (2014). https://doi.org/10.1080/00207721.2014.929191

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, H., Li, F., Liu, J., Ju, Z.: A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models. IEEE Trans. Ind. Electron. 67(5), 3819–3829 (2019). https://doi.org/10.1109/TIE.2019.2916390

    Article  Google Scholar 

  18. Cardenas Alzate, P., Velez, G., Mesa, F.: Optimum control using finite time quadratic linear regulator. Contemp. Eng. Sci. 11, 4709–4716 (2018). https://doi.org/10.12988/ces.2018.89516

    Article  Google Scholar 

  19. De Luca, A., Oriolo, G., Vendittelli, M.: Control of wheeled mobile robots: Experimental Overview. 181–226. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-45000-9_8

Download references

Acknowledgments

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia –CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XIII-2019-08; Sistema Colaborativo de Robots Aéreos para Manipular Cargas con Óptimo Consumo de Recursos; also to Universidad de las Fuerzas Armadas ESPE, Grupo de Investigación ARSI, and finally to Instituto de Automática de la Universidad Nacional de San Juan for the support and the theoric knowledge provided for the execution of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian P. Carvajal , Víctor H. Andaluz , Flavio Roberti or Ricardo Carelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carvajal, C.P., Andaluz, V.H., Roberti, F., Carelli, R. (2020). Optimal Trajectory Tracking Control for a UAV Based on Linearized Dynamic Error. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds) Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices. IEA/AIE 2020. Lecture Notes in Computer Science(), vol 12144. Springer, Cham. https://doi.org/10.1007/978-3-030-55789-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55789-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55788-1

  • Online ISBN: 978-3-030-55789-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics