Abstract
For many decades, Machine Learning made it possible for humans to map the patterns that govern interpolating problems and also, provided methods to cluster and classify big amount of uncharted data. In recent years, optimization problems which can be mathematically formulated and are hard to be solved with simple or naïve heuristic methods brought up the need for new methods, namely Evolutionary Strategies. These methods are inspired by strategies that are met in flora and fauna in nature. However, a lot of these methods are called nature-inspired when there is no such inspiration in their algorithmic model. Furthermore, even more evolutionary schemes are presented each year, but the lack of applications makes them of no actual utility. In this chapter, all Swarm Intelligence methods as far as the methods that are not inspired by swarms, flocks or groups, but still derive their inspiration by animal behaviors are collected. The applications of these two sub-categories are investigated and some preliminary findings are presented to highlight some main points for Nature Inspired Intelligence utility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Jantzen, Foundations of Fuzzy Control: A Practical Approach, 2nd edn. (Wiley Publishing, 2013)
L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)
Y. Kodratoff, R.S. Michalski (eds.), Machine learning: an artificial intelligence approach, vol. III (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990)
R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds.), Machine Learning: An Artificial Intelligence Approach (Springer, Berlin Heidelberg, 1983)
S.R. Michalski, G.J. Carbonell, M.T. Mitchell (eds.), Machine Learning an Artificial Intelligence Approach, vol. II (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1986)
T.M. Mitchell, J.G. Carbonell, R.S. Michalski (eds.), Machine Learning: A Guide to Current Research (Springer, US, 1986)
F. Rosenblatt, Two theorems of statistical separability in the perceptron. Mechanisation of thought processes, in Proceedings of a symposium held at the National Physical Laboratory, ed. by DV Blake, Albert M. Uttley (Her Majesty’s Stationery Office, London, 1959), pp. 419–456
P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D Thesis, Harvard University (1974)
B. Widrow, M.E. Hoff, Adaptive switching circuits. Stanford University Ca Stanford Electronics Labs (1960)
L. Magdalena, Fuzzy Rule-Based Systems, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin Heidelberg, 2015), pp. 203–218
H.R. Berenji, Fuzzy logic controllers, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 69–96
L.A. Zadeh, Knowledge representation in fuzzy logic, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 1–25
J.M. Keller, R. Krishnapuram, Fuzzy set methods in computer vision, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 121–145
S.K. Pal, Fuzziness, image information and scene analysis, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 147–183
V. Novák, Fuzzy sets in natural language processing, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 185–200
D. Michie, “Memo” functions and machine learning. Nature 218, 19–22 (1968)
J.H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence (U Michigan Press, Oxford, England, 1975)
A. Tzanetos, G. Dounias, Nature inspired optimization algorithms related to physical phenomena and laws of science: a survey. Int. J. Artif. Intell. Tools 26, 1750022 (2017). https://doi.org/10.1142/s0218213017500221
A. Chakraborty, A.K. Kar, Swarm Intelligence: a review of algorithms, in Nature-Inspired Computing and Optimization: Theory and Applications, ed. by S. Patnaik, X.-S. Yang, K. Nakamatsu (Springer International Publishing, Cham, 2017), pp. 475–494
R.S. Parpinelli, H.S. Lopes, New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3, 1–16 (2011). https://doi.org/10.1504/ijbic.2011.0387
A. Slowik, H. Kwasnicka, Nature inspired methods and their industry applications—Swarm Intelligence Algorithms. IEEE Trans. Ind. Inf. 14, 1004–1015 (2018). https://doi.org/10.1109/tii.2017.2786782
B Chawda, J Patel Natural Computing Algorithms–a survey. Int. J. Emerg. Technol. Adv. Eng. 6 (2016)
J. Del Ser, E. Osaba, D. Molina et al., Bio-inspired computation: where we stand and what’s next. Swarm Evol. Comput. 48, 220–250 (2019). https://doi.org/10.1016/j.swevo.2019.04.008
S. Roy, S. Biswas, S.S. Chaudhuri, Nature-inspired Swarm Intelligence and its applications. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6, 55 (2014)
K.C.B. Steer, A. Wirth, S.K. Halgamuge, The rationale behind seeking inspiration from nature, in Nature-Inspired Algorithms for Optimisation, ed. by R. Chiong (Springer, Berlin Heidelberg, 2009), pp. 51–76
O.K. Erol, I. Eksin, A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37, 106–111 (2006)
A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)
G. Beni, J. Wang, Swarm Intelligence in cellular robotic systems, in Robots and Biological Systems: Towards a New Bionics?, ed. by P. Dario, G. Sandini, P. Aebischer (Springer, Berlin, Heidelberg, 1993), pp. 703–712
JM Bishop, Stochastic searching networks, in 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313) (IET, 1989), pp 329–331
V. Bhasin, P. Bedi, A. Singhal, Feature selection for steganalysis based on modified Stochastic Diffusion Search using Fisher score, in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2014), pp. 2323–2330
J.M. Bishop, P. Torr, The stochastic search network, in Neural Networks for Vision, Speech and Natural Language, ed. by R. Linggard, D.J. Myers, C. Nightingale (Springer, Netherlands, Dordrecht, 1992), pp. 370–387
P.D. Beattie, J.M. Bishop, Self-localisation in the ‘Senario’ autonomous wheelchair. J. Intell. Rob. Syst. 22, 255–267 (1998). https://doi.org/10.1023/a:1008033229660
M.M. al-Rifaie, A. Aber, Identifying metastasis in bone scans with Stochastic Diffusion Search, in 2012 International Symposium on Information Technologies in Medicine and Education (2012), pp. 519–523
S. Hurley, R.M. Whitaker, An agent based approach to site selection for wireless networks, in Proceedings of the 2002 ACM Symposium on Applied Computing (ACM, New York, NY, USA, 2002), pp. 574–577
M. Dorigo, Optimization, learning and natural algorithms. Ph.D Thesis, Politecnico di Milano (1992)
M, Dorigo, T. Stützle, ACO algorithms for the traveling salesman problem, in Evolutionary Algorithms in Engineering and Computer Science, ed. by K. Miettinen (K. Miettinen, M. Makela, P. Neittaanmaki, J. Periaux, eds.) (Wiley, 1999), pp. 163–183
C. Fountas, A. Vlachos, Ant Colonies Optimization (ACO) for the solution of the Vehicle Routing Problem (VRP). J. Inf. Optim. Sci. 26, 135–142 (2005). https://doi.org/10.1080/02522667.2005.10699639
S. Fidanova, M. Durchova, Ant Algorithm for Grid Scheduling Problem, in Large-Scale Scientific Computing, ed. by I. Lirkov, S. Margenov, J. Waśniewski (Springer, Berlin Heidelberg, 2006), pp. 405–412
W.J. Gutjahr, M.S. Rauner, An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Comput. Oper. Res. 34, 642–666 (2007). https://doi.org/10.1016/j.cor.2005.03.018
W. Wen, C. Wang, D. Wu, Y. Xie (2015) An ACO-based scheduling strategy on load balancing in cloud computing environment, in 2015 Ninth International Conference on Frontier of Computer Science and Technology. pp. 364–369
T. Stützle, M. Dorigo, ACO algorithms for the quadratic assignment problem. New Ideas in Optimization (1999)
L. Lessing, I. Dumitrescu, T. Stützle, A Comparison Between ACO algorithms for the set covering problem, in Ant Colony Optimization and Swarm Intelligence, ed. by M. Dorigo, M. Birattari, C. Blum, et al. (Springer, Berlin Heidelberg, 2004), pp. 1–12
M.A.P. Garcia, O. Montiel, O. Castillo et al., Path planning for autonomous mobile robot navigation with Ant Colony Optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9, 1102–1110 (2009). https://doi.org/10.1016/j.asoc.2009.02.014
D. Martens, M. De Backer, R. Haesen et al., Classification With Ant Colony Optimization. IEEE Trans. Evol. Comput. 11, 651–665 (2007). https://doi.org/10.1109/tevc.2006.890229
A. Shmygelska, H.H. Hoos, An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinform. 6, 30 (2005). https://doi.org/10.1186/1471-2105-6-30
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science. (IEEE, 1995), pp. 39–43
H. Wu, J. Geng, R. Jin et al., An improved comprehensive learning Particle Swarm Optimization and Its application to the semiautomatic design of antennas. IEEE Trans. Antennas Propag. 57, 3018–3028 (2009). https://doi.org/10.1109/tap.2009.2028608
R.C. Eberhart, X. Hu, Human tremor analysis using Particle Swarm Optimization, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3 (1999), pp. 1927–1930
M. Shen, Z. Zhan, W. Chen et al., Bi-velocity discrete Particle Swarm Optimization and its application to multicast routing problem in communication networks. IEEE Trans. Ind. Electron. 61, 7141–7151 (2014). https://doi.org/10.1109/tie.2014.2314075
J. Nenortaite, R. Simutis, Adapting Particle Swarm Optimization to stock markets, in 5th International Conference on Intelligent Systems Design and Applications (ISDA’05) (2005), pp. 520–525
A.A.A. Esmin, G. Lambert-Torres, Loss power minimization using Particle Swarm Optimization, in The 2006 IEEE International Joint Conference on Neural Network Proceedings (2006) pp. 1988–1992
Y. Zhang, D. Gong, J. Zhang, Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103, 172–185 (2013). https://doi.org/10.1016/j.neucom.2012.09.019
C.-J. Liao, Chao-Tang Tseng, P. Luarn, A discrete version of Particle Swarm Optimization for flowshop scheduling problems. Comput. Oper. Res. 34, 3099–3111 (2007). https://doi.org/10.1016/j.cor.2005.11.017
B. Xue, M. Zhang, W.N. Browne, Particle Swarm Optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43, 1656–1671 (2013). https://doi.org/10.1109/tsmcb.2012.2227469
Y. Wang, J. Lv, L. Zhu, Y. Ma, Crystal structure prediction via Particle-Swarm Optimization. Phys. Rev. B 82, 094116 (2010). https://doi.org/10.1103/physrevb.82.094116
I.-H. Kuo, S.-J. Horng, T.-W. Kao et al., An improved method for forecasting enrollments based on fuzzy time series and Particle Swarm Optimization. Expert Syst. Appl. 36, 6108–6117 (2009). https://doi.org/10.1016/j.eswa.2008.07.043
I. Fister Jr., X-S. Yang, I. Fister et al., A brief review of nature-inspired algorithms for optimization (2013). arXiv:13074186
K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22, 52–67 (2002). https://doi.org/10.1109/mcs.2002.1004010
H.F. Wedde, M. Farooq, Y. Zhang, BeeHive: an efficient fault-tolerant routing algorithm inspired by Honey Bee behavior, in Ant Colony Optimization and Swarm Intelligence, ed. by M. Dorigo, M. Birattari, C. Blum, et al. (Springer, Berlin Heidelberg, 2004), pp. 83–94
D. Teodorovic, M. Dell’Orco, Bee colony optimization–a cooperative learning approach to complex transportation problems. Adv. OR AI Methods Trans. 51, 60 (2005)
D.T. Pham, A. Ghanbarzadeh, E. Koç et al., The Bees Algorithm—a novel tool for complex optimisation problems, in Intelligent Production Machines and Systems, ed. by D.T. Pham, E.E. Eldukhri, A.J. Soroka (Elsevier Science Ltd, Oxford, 2006), pp. 454–459
D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x
X.-S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), ed. by J.R. González, D.A. Pelta, C. Cruz, et al. (Springer, Berlin Heidelberg, 2010), pp. 65–74
R. Akbari, A. Mohammadi, K. Ziarati, A novel bee swarm optimization algorithm for numerical function optimization. Commun. Nonlinear Sci. Numer. Simul. 15, 3142–3155 (2010). https://doi.org/10.1016/j.cnsns.2009.11.003
R. Oftadeh, M.J. Mahjoob, M. Shariatpanahi, A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math Appl. 60, 2087–2098 (2010). https://doi.org/10.1016/j.camwa.2010.07.049
C. Zhaohui, T. Haiyan, Cockroach swarm optimization for vehicle routing problems. Energy Proc. 13, 30–35 (2011). https://doi.org/10.1016/j.egypro.2011.11.007
M.T.M.H. Shirzadi, M.H. Bagheri, A novel meta-heuristic algorithm for numerical function optimization: Blind, Naked Mole-Rats (BNMR) algorithm. SRE 7, 3566–3583 (2012). https://doi.org/10.5897/sre12.514
F. Ahmadi, H. Salehi, K. Karimi, Eurygaster algorithm: a new approach to optimization. Int. J. Comput. Appl. 57, 9–13 (2012)
R.D. Maia, L.N. de Castro, W.M. Caminhas, Bee colonies as model for multimodal continuous optimization: The OptBees algorithm, in 2012 IEEE Congress on Evolutionary Computation (2012), pp. 1–8
R,. Tang, S. Fong, X. Yang, S. Deb, Wolf search algorithm with ephemeral memory, in Seventh International Conference on Digital Information Management (ICDIM 2012) (2012), pp. 165–172
C. Subramanian, A. Sekar, K. Subramanian, A new engineering optimization method: African wild dog algorithm. Int. J. Soft Comput. 8, 163–170 (2013). https://doi.org/10.3923/ijscomp.2013.163.170
Y. Gheraibia, A. Moussaoui, Penguins Search Optimization Algorithm (PeSOA), in Recent Trends in Applied Artificial Intelligence, ed. by M. Ali, T. Bosse, K.V. Hindriks, et al. (Springer, Berlin Heidelberg, 2013), pp. 222–231
P. Wang, Z. Zhu, S. Huang, Seven-Spot Ladybird Optimization: a novel and efficient metaheuristic algorithm for numerical optimization. Sci. World J. (2013). https://doi.org/10.1155/2013/378515
S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007
X. Meng, Y. Liu, X. Gao, H. Zhang, A new bio-inspired algorithm: Chicken Swarm Optimization, in International Conference in Swarm Intelligence (Springer, 2014) pp. 86–94
S.-J. Wu, C.-T. Wu, A bio-inspired optimization for inferring interactive networks: Cockroach swarm evolution. Expert Syst. Appl. 42, 3253–3267 (2015). https://doi.org/10.1016/j.eswa.2014.11.039
S.-J. Wu, C.-T. Wu, Computational optimization for S-type biological systems: Cockroach Genetic Algorithm. Math. Biosci. 245, 299–313 (2013). https://doi.org/10.1016/j.mbs.2013.07.019
S. Arora, S. Singh, Butterfly algorithm with Lèvy Flights for global optimization, in 2015 International Conference on Signal Processing, Computing and Control (ISPCC) (2015), pp. 220–224
S. Arora, S. Singh, Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4
W. Yong, W. Tao, Z. Cheng-Zhi, H. Hua-Juan, A new stochastic optimization approach—Dolphin Swarm Optimization Algorithm. Int. J. Comput. Intell. Appl. 15, 1650011 (2016). https://doi.org/10.1142/s1469026816500115
A. Brabazon, W. Cui, M. O’Neill, The raven roosting optimisation algorithm. Soft. Comput. 20, 525–545 (2016). https://doi.org/10.1007/s00500-014-1520-5
S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
X.-B. Meng, X.Z. Gao, L. Lu et al., A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. J. Exp. Theor. Artif. Intell. 28, 673–687 (2016). https://doi.org/10.1080/0952813x.2015.1042530
G. Dhiman, V. Kumar, Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014
B. Zeng, L. Gao, X. Li, Whale Swarm Algorithm for function optimization, in Intelligent Computing Theories and Application ed. by D.-S. Huang, V. Bevilacqua, P. Premaratne, P. Gupta (Springer International Publishing, 2017), pp. 624–639
D. Zaldívar, B. Morales, A. Rodríguez et al., A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior. Biosystems 174, 1–21 (2018). https://doi.org/10.1016/j.biosystems.2018.09.007
ATS Al-Obaidi, HS Abdullah, O. Ahmed Zied, Meerkat Clan Algorithm: a New Swarm Intelligence Algorithm. Indones. J. Electric. Eng. Comput. Sci. 10, 354–360 (2018). https://doi.org/10.11591/ijeecs.v10.i1
S. Shadravan, H.R. Naji, V.K. Bardsiri, The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 80, 20–34 (2019). https://doi.org/10.1016/j.engappai.2019.01.001
X.L. Li, Z.J. Shao, J.X. Qian, An optimizing method based on autonomous animates: Fish-swarm Algorithm. Syst. Eng. Theory Pract. 22, 32–38 (2002). https://doi.org/10.12011/1000-6788(2002)11-32
K.N. Krishnanand, D. Ghose, Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent Grid Syst. 2, 209–222 (2006)
T.C. Havens, C.J. Spain, N.G. Salmon, J.M. Keller, Roach Infestation Optimization, in 2008 IEEE Swarm Intelligence Symposium (2008), pp. 1–7
F. Comellas, J. Martinez-Navarro, Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behaviour, in Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation (ACM, 2009), pp. 811–814
X. Yang, S. Deb, Cuckoo Search via Lévy flights, in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (2009), pp. 210–214
X.-S. Yang, Firefly Algorithms for multimodal optimization, in Stochastic Algorithms: Foundations and Applications, ed. by O. Watanabe, T. Zeugmann (Springer, Berlin Heidelberg, 2009), pp. 169–178
Y. Shiqin, J. Jianjun, Y. Guangxing, A Dolphin Partner Optimization, in 2009 WRI Global Congress on Intelligent Systems (IEEE, 2009), pp. 124–128
S Chen, Locust Swarms-a new multi-optima search technique, in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1745–1752
R. Hedayatzadeh, F.A. Salmassi, M. Keshtgari et al., Termite colony optimization: a novel approach for optimizing continuous problems, in 2010 18th Iranian Conference on Electrical Engineering (2010), pp. 553–558
A.H. Gandomi, A.H. Alavi, Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)
E. Cuevas, M. Cienfuegos, D. Zaldívar, M. Pérez-Cisneros, A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40, 6374–6384 (2013). https://doi.org/10.1016/j.eswa.2013.05.041
M. Neshat, G. Sepidnam, M. Sargolzaei, Swallow swarm optimization algorithm: a new method to optimization. Neural Comput. Appl. 23, 429–454 (2013). https://doi.org/10.1007/s00521-012-0939-9
J.C. Bansal, H. Sharma, S.S. Jadon, M. Clerc, Spider Monkey Optimization Algorithm for numerical optimization. Memet. Comput. 6, 31–47 (2014). https://doi.org/10.1007/s12293-013-0128-0
J.B. Odili, M.N.M. Kahar, African buffalo optimization (ABO): a new meta-heuristic algorithm. J. Adv. Appl. Sci. 3, 101–106 (2015)
S. Deb, S. Fong, Z. Tian, Elephant Search Algorithm for optimization problems, in 2015 Tenth International Conference on Digital Information Management (ICDIM) (2015), pp. 249–255
G-G. Wang, S. Deb, L.D.S. Coelho, Elephant herding optimization, in 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (IEEE, 2015) pp. 1–5
R. Omidvar, H. Parvin, F. Rad, SSPCO optimization algorithm (See-See Partridge Chicks Optimization), in 2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI) (2015), pp. 101–106
G.-G. Wang, S. Deb, L.D.S. Coelho, Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 7, 1–23 (2015)
M. Yazdani, F. Jolai, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3, 24–36 (2016)
T. Wu, M. Yao, J. Yang, Dolphin Swarm Algorithm. Front. Inf. Technol. Electron. Eng. 17, 717–729 (2016). https://doi.org/10.1631/fitee.1500287
J. Pierezan, L. Dos Santos Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in 2018 IEEE Congress on Evolutionary Computation (CEC) (2018), pp 1–8
G. Dhiman, V. Kumar, Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl. Based Syst. 159, 20–50 (2018). https://doi.org/10.1016/j.knosys.2018.06.001
S. Harifi, M. Khalilian, J. Mohammadzadeh, S. Ebrahimnejad, Emperor Penguins Colony: a new metaheuristic algorithm for optimization. Evol. Intel. 12, 211–226 (2019). https://doi.org/10.1007/s12065-019-00212-x
K. Hyunchul, A. Byungchul, A new evolutionary algorithm based on sheep flocks heredity model, in 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol. 2 (IEEE Cat. No.01CH37233) (2001), pp. 514–517
W.J. Tang, Q.H. Wu, J.R. Saunders, A bacterial swarming algorithm for global optimization, in 2007 IEEE Congress on Evolutionary Computation (2007), pp. 1207–1212
F.J.M. Garcia, J.A.M. Pérez, Jumping frogs optimization: a new swarm method for discrete optimization. Documentos de Trabajo del DEIOC 3 (2008)
T Chen, A simulative bionic intelligent optimization algorithm: artificial searching Swarm Algorithm and its performance analysis, in 2009 International Joint Conference on Computational Sciences and Optimization (2009), pp 864–866
C.J.A.B. Filho, F.B. de Lima Neto, A.J.C.C. Lins et al., Fish School search, in Nature-Inspired Algorithms for Optimisation, ed. by R. Chiong (Springer, Berlin Heidelberg, 2009), pp. 261–277
H. Chen, Y. Zhu, K. Hu, X. He, Hierarchical Swarm Model: a new approach to optimization. Discret. Dyn. Nat. Soc. (2010). https://doi.org/10.1155/2010/379649
E. Duman, M. Uysal, A.F. Alkaya, Migrating Birds Optimization: a new meta-heuristic approach and its application to the quadratic assignment problem, in Applications of Evolutionary Computation, ed. by C. Di Chio, S. Cagnoni, C. Cotta, et al. (Springer, Berlin Heidelberg, 2011), pp. 254–263
Y. Marinakis, M. Marinaki, Bumble bees mating optimization algorithm for the vehicle routing problem, in Handbook of Swarm Intelligence: Concepts, Principles and Applications, ed. by B.K. Panigrahi, Y. Shi, M.-H. Lim (Springer, Berlin Heidelberg, 2011), pp. 347–369
T.O. Ting, K.L. Man, S.-U. Guan et al., Weightless Swarm Algorithm (WSA) for dynamic optimization problems, in Network and Parallel Computing, ed. by J.J. Park, A. Zomaya, S.-S. Yeo, S. Sahni (Springer, Berlin Heidelberg, 2012), pp. 508–515
P. Qiao, H. Duan, Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cyber 7, 24–37 (2014). https://doi.org/10.1108/ijicc-02-2014-0005
X. Li, J. Zhang, M. Yin, Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24, 1867–1877 (2014)
G.-G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization. Neural Comput. Appl. (2015). https://doi.org/10.1007/s00521-015-1923-y
L. Cheng, L. Han, X. Zeng et al., Adaptive Cockroach Colony Optimization for rod-like robot navigation. J. Bionic Eng. 12, 324–337 (2015). https://doi.org/10.1016/s1672-6529(14)60125-6
S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)
S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1
S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili et al., Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002
S.Z. Mirjalili, S. Mirjalili, S. Saremi et al., Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48, 805–820 (2018). https://doi.org/10.1007/s10489-017-1019-8
F. Fausto, E. Cuevas, A. Valdivia, A. González, A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160, 39–55 (2017). https://doi.org/10.1016/j.biosystems.2017.07.010
Q. Zhang, R. Wang, J. Yang et al., Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization. Soft. Comput. (2018). https://doi.org/10.1007/s00500-018-3381-9
A. Kaveh, S. Mahjoubi, Lion pride optimization algorithm: a meta-heuristic method for global optimization problems. Scientia Iranica 25, 3113–3132 (2018). https://doi.org/10.24200/sci.2018.20833
C.E. Klein, L. dos Santos Coelho, Meerkats-inspired algorithm for global optimization problems, in 26th European Symposium on Artificial Neural Networks, ESANN 2018 (Bruges, Belgium, 25–27 Apr 2018)
M.M. Motevali, A.M. Shanghooshabad, R.Z. Aram, H. Keshavarz, WHO: a new evolutionary algorithm bio-inspired by Wildebeests with a case study on bank customer segmentation. Int. J. Pattern Recogn. Artif. Intell. 33, 1959017 (2018). https://doi.org/10.1142/s0218001419590171
HA Bouarara, RM Hamou, A Abdelmalek, Enhanced Artificial Social Cockroaches (EASC) for modern information retrieval, in Information Retrieval and Management: Concepts, Methodologies. Tools, and Application (2018), pp. 928–960. https://doi.org/10.4018/978-1-5225-5191-1.ch040
A. Kazikova, M. Pluhacek, R. Senkerik, A. Viktorin, Proposal of a new swarm optimization method inspired in bison behavior, in Recent Advances in Soft Computing, ed. by R Matoušek (Springer International Publishing, 2019), pp. 146–156
G. Dhiman, V. Kumar, Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 165, 169–196 (2019). https://doi.org/10.1016/j.knosys.2018.11.024
R. Masadeh, A. Sharieh, B. Mahafzah, Humpback whale optimization algorithm based on vocal behavior for task scheduling in cloud computing. Int. J. Adv. Sci. Technol. 13, 121–140 (2019)
E. Cuevas, F. Fausto, A. González, A Swarm Algorithm inspired by the collective animal behavior, in New Advancements in Swarm Algorithms: Operators and Applications, ed. by E. Cuevas, F. Fausto, A. González (Springer International Publishing, Cham, 2020), pp. 161–188
H.A. Abbass, MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach, in Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1 (IEEE Cat. No.01TH8546, 2001), pp. 207–214
S.D. Muller, J. Marchetto, S. Airaghi, P. Kournoutsakos, Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6, 16–29 (2002). https://doi.org/10.1109/4235.985689
P. Cortés, J.M. García, J. Muñuzuri, L. Onieva, Viral systems: a new bio-inspired optimisation approach. Comput. Oper. Res. 35, 2840–2860 (2008). https://doi.org/10.1016/j.cor.2006.12.018
S.S. Pattnaik, K.M. Bakwad, B.S. Sohi et al., Swine Influenza Models Based Optimization (SIMBO). Appl. Soft Comput. 13, 628–653 (2013). https://doi.org/10.1016/j.asoc.2012.07.010
M. Jaderyan, H. Khotanlou, Virulence Optimization Algorithm. Appl. Soft Comput. 43, 596–618 (2016). https://doi.org/10.1016/j.asoc.2016.02.038
M.D. Li, H. Zhao, X.W. Weng, T. Han, A novel nature-inspired algorithm for optimization: Virus colony search. Adv. Eng. Softw. 92, 65–88 (2016). https://doi.org/10.1016/j.advengsoft.2015.11.004
S.-C. Chu, P. Tsai, J.-S. Pan, Cat Swarm Optimization, in PRICAI 2006: Trends in Artificial Intelligence, ed. by Q. Yang, G. Webb (Springer, Berlin Heidelberg, 2006), pp. 854–858
M. Eusuff, K. Lansey, F. Pasha, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38, 129–154 (2006). https://doi.org/10.1080/03052150500384759
O.B. Haddad, A. Afshar, M.A. Mariño, Honey-Bees Mating Optimization (HBMO) Algorithm: a new heuristic approach for water resources optimization. Water Resour. Manag. 20, 661–680 (2006). https://doi.org/10.1007/s11269-005-9001-3
S. He, Q. H. Wu, J.R. Saunders, A novel Group Search Optimizer inspired by animal behavioural ecology, in 2006 IEEE International Conference on Evolutionary Computation (2006), pp. 1272–1278
A. Mucherino, O. Seref, Monkey search: a novel metaheuristic search for global optimization. AIP Conf. Proc. 953, 162–173 (2007). https://doi.org/10.1063/1.2817338
R. Zhao, W. Tang, Monkey algorithm for global numerical optimization. J. Uncertain Syst. 2, 165–176 (2008)
X. Lu, Y. Zhou, A novel global convergence algorithm: Bee Collecting Pollen Algorithm, in Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, ed. by D.-S. Huang, D.C. Wunsch, D.S. Levine, K.-H. Jo (Springer, Berlin Heidelberg, 2008), pp. 518–525
D. Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008)
W.T. Pan, A new evolutionary computation approach: fruit fly optimization algorithm, in Proceedings of the Conference on Digital Technology and Innovation Management (2011)
A.A. Minhas F ul, M. Arif, MOX: A novel global optimization algorithm inspired from Oviposition site selection and egg hatching inhibition in mosquitoes. App. Soft Comput. 11, 4614–4625 (2011). https://doi.org/10.1016/j.asoc.2011.07.020
M.A. Tawfeeq, Intelligent Algorithm for Optimum Solutions Based on the Principles of Bat Sonar (2012). arXiv:12110730
I. Aihara, H. Kitahata, K. Yoshikawa, K. Aihara, Mathematical modeling of frogs’ calling behavior and its possible application to artificial life and robotics. Artif. Life Robot. 12, 29–32 (2008). https://doi.org/10.1007/s10015-007-0436-x
M. El-Dosuky, A. El-Bassiouny, T. Hamza, M. Rashad, New Hoopoe Heuristic Optimization (2012). CoRR arXiv:abs/1211.6410
B.R. Rajakumar, The Lion’s Algorithm: a new nature-inspired search algorithm. Proc. Technol. 6, 126–135 (2012). https://doi.org/10.1016/j.protcy.2012.10.016
A. Mozaffari, A. Fathi, S. Behzadipour, The great salmon run: a novel bio-inspired algorithm for artificial system design and optimisation. IJBIC 4, 286 (2012). https://doi.org/10.1504/ijbic.2012.049889
A.S. Eesa, A.M.A. Brifcani, Z. Orman, Cuttlefish Algorithm–a novel bio-inspired optimization algorithm. Int. J. Sci. Eng. Res. 4, 1978–1986 (2013)
A. Kaveh, N. Farhoudi, A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013). https://doi.org/10.1016/j.advengsoft.2013.03.004
C. Sur, S. Sharma, A. Shukla, Egyptian vulture optimization algorithm–a new nature inspired meta-heuristics for knapsack problem, in The 9th International Conference on Computing and Information Technology (IC2IT2013) (Springer, 2013), pp. 227–237
C. Sur, A. Shukla, New bio-inspired meta-heuristics-Green Herons Optimization Algorithm-for optimization of travelling salesman problem and road network, in Swarm, Evolutionary, and Memetic Computing ed. by B.K. Panigrahi, P.N. Suganthan, S. Das, S.S. Dash (Springer International Publishing, 2013), pp. 168–179
M. Hajiaghaei-Keshteli, M. Aminnayeri, Keshtel Algorithm (KA): a new optimization algorithm inspired by Keshtels’ feeding, in Proceeding in IEEE Conference on Industrial Engineering and Management Systems (IEEE, Rabat, Morocco, 2013), pp. 2249–2253
M. Bidar, H. Rashidy Kanan, Jumper firefly algorithm, in ICCKE 2013 (2013), pp. 267–271
S.L. Tilahun, H.C. Ong, Prey-Predator Algorithm: a new metaheuristic algorithm for optimization problems. Int. J. Info. Tech. Dec. Mak. 14, 1331–1352 (2013). https://doi.org/10.1142/s021962201450031x
H. Mo, L. Xu, Magnetotactic bacteria optimization algorithm for multimodal optimization, in 2013 IEEE Symposium on Swarm Intelligence (SIS) (2013), pp. 240–247
J. An, Q. Kang, L. Wang, Q. Wu, Mussels Wandering Optimization: an ecologically inspired algorithm for global optimization. Cogn. Comput. 5, 188–199 (2013). https://doi.org/10.1007/s12559-012-9189-5
A. Askarzadeh, Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun. Nonlinear Sci. Numer. Simul. 19, 1213–1228 (2014)
S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres et al., The Coral Reefs Optimization Algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci. World J. (2014). https://doi.org/10.1155/2014/739768
S. Mohseni, R. Gholami, N. Zarei, A.R. Zadeh, Competition over Resources: A new optimization algorithm based on animals behavioral ecology, in 2014 International Conference on Intelligent Networking and Collaborative Systems (2014), pp. 311–315
M.-Y. Cheng, D. Prayogo, Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014). https://doi.org/10.1016/j.compstruc.2014.03.007
S. Mirjalili, The Ant Lion Optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010
S.A. Uymaz, G. Tezel, E. Yel, Artificial algae algorithm (AAA) for nonlinear global optimization. Appl. Soft Comput. 31, 153–171 (2015). https://doi.org/10.1016/j.asoc.2015.03.003
C. Chen, Y. Tsai, I. Liu, et al., A novel metaheuristic: Jaguar Algorithm with learning behavior, in 2015 IEEE International Conference on Systems, Man, and Cybernetics (2015), pp. 1595–1600
M.K. Ibrahim, R.S. Ali, Novel optimization algorithm inspired by camel traveling behavior. Iraqi J. Electric. Electron. Eng. 12, 167–177 (2016)
A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 169, 1–12 (2016). https://doi.org/10.1016/j.compstruc.2016.03.001
A.F. Fard, M. Hajiaghaei-Keshteli, Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating (2016), pp. 33–34
M. Alauddin, Mosquito flying optimization (MFO), in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (2016), pp. 79–84
O. Abedinia, N. Amjady, A. Ghasemi, A new metaheuristic algorithm based on shark smell optimization. Complexity 21, 97–116 (2016). https://doi.org/10.1002/cplx.21634
A. Ebrahimi, E. Khamehchi, Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems. J. Nat. Gas Sci. Eng. 29, 211–222 (2016). https://doi.org/10.1016/j.jngse.2016.01.001
X. Qi, Y. Zhu, H. Zhang, A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 23, 226–239 (2017). https://doi.org/10.1016/j.jocs.2017.06.003
X. Jiang, S. Li, BAS: Beetle Antennae Search Algorithm for optimization problems (2017). CoRR arXiv:abs/1710.10724
V. Haldar, N. Chakraborty, A novel evolutionary technique based on electrolocation principle of elephant nose fish and shark: fish electrolocation optimization. Soft. Comput. 21, 3827–3848 (2017). https://doi.org/10.1007/s00500-016-2033-1
T.R. Biyanto, Irawan S. Matradji et al., Killer Whale Algorithm: an algorithm inspired by the life of Killer Whale. Procedia Comput. Sci. 124, 151–157 (2017). https://doi.org/10.1016/j.procs.2017.12.141
E. Hosseini, Laying chicken algorithm: a new meta-heuristic approach to solve continuous programming problems. J App. Comput. Math. 6, 10–4172 (2017). https://doi.org/10.4172/2168-9679.1000344
D. Połap, M. Woz´niak, Polar Bear Optimization Algorithm: meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 9 (2017). https://doi.org/10.3390/sym9100203
S.H. Samareh Moosavi, V. Khatibi Bardsiri, Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 60, 1–15 (2017). https://doi.org/10.1016/j.engappai.2017.01.006
M.H. Sulaiman, Z. Mustaffa, M.M. Saari et al., Barnacles Mating Optimizer: an evolutionary algorithm for solving optimization, in 2018 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (IEEE, 2018), pp. 99–104
A. Serani, M. Diez, Dolphin Pod Optimization, in Machine Learning, Optimization, and Big Data ed. by G. Nicosia, P. Pardalos, G. Giuffrida, R. Umeton (Springer International Publishing, 2018), pp. 50–62
C.E. Klein, V.C. Mariani, L.D.S. Coelho, Cheetah Based Optimization Algorithm: a novel swarm intelligence paradigm, in 26th European Symposium on Artificial Neural Networks, ESANN 2018, UCL Upcoming Conferences for Computer Science & Electronics (Bruges, Belgium, 25–27 Apr 2018), pp. 685–690
M.C. Catalbas, A. Gulten, Circular structures of puffer fish: a new metaheuristic optimization algorithm, in 2018 Third International Conference on Electrical and Biomedical Engineering, Clean Energy and Green Computing (EBECEGC). (IEEE, 2018), pp. 1–5
E. Jahani, M. Chizari, Tackling global optimization problems with a novel algorithm–Mouth Brooding Fish algorithm. Appl. Soft Comput. 62, 987–1002 (2018). https://doi.org/10.1016/j.asoc.2017.09.035
N.A. Kallioras, N.D. Lagaros, D.N. Avtzis, Pity Beetle Algorithm–a new metaheuristic inspired by the behavior of bark beetles. Adv. Eng. Softw. 121, 147–166 (2018). https://doi.org/10.1016/j.advengsoft.2018.04.007
T. Wang, L. Yang, Q. Liu, Beetle Swarm Optimization Algorithm: theory and application (2018). arXiv:180800206
A.T. Khan, S. Li, P.S. Stanimirovic, Y. Zhang, Model-free optimization using eagle perching optimizer (2018). CoRR arXiv:abs/1807.02754
M. Jain, S. Maurya, A. Rani, V. Singh, Owl search algorithm: A novel nature-inspired heuristic paradigm for global optimization. J. Intell. Fuzzy Syst. 34, 1573–1582 (2018). https://doi.org/10.3233/jifs-169452
B. Ghojogh, S. Sharifian, Pontogammarus Maeoticus Swarm Optimization: a metaheuristic optimization algorithm (2018). CoRR arXiv:abs/1807.01844
S. Deb, Z. Tian, S. Fong et al., Solving permutation flow-shop scheduling problem by rhinoceros search algorithm. Soft. Comput. 22, 6025–6034 (2018). https://doi.org/10.1007/s00500-018-3075-3
B. Almonacid, R. Soto, Andean Condor Algorithm for cell formation problems. Nat. Comput. 18, 351–381 (2019). https://doi.org/10.1007/s11047-018-9675-0
H.A. Alsattar, A.A. Zaidan, B.B. Zaidan, Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. (2019). https://doi.org/10.1007/s10462-019-09732-5
A.S. Shamsaldin, T.A. Rashid, R.A. Al-Rashid Agha et al., Donkey and Smuggler Optimization Algorithm: a collaborative working approach to path finding. J. Comput. Design Eng. (2019). https://doi.org/10.1016/j.jcde.2019.04.004
E.H. de Vasconcelos Segundo, V.C. Mariani, L. dos Santos Coelho, Design of heat exchangers using falcon optimization algorithm. Appl. Thermal Eng. (2019). https://doi.org/10.1016/j.applthermaleng.2019.04.038
G, Azizyan, F. Miarnaeimi, M. Rashki, N. Shabakhty, Flying Squirrel Optimizer (FSO): a novel SI-based optimization algorithm for engineering problems. Iran. J. Optim. (2019)
A.A. Heidari, S. Mirjalili, H. Faris et al., Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028
G. Dhiman, A. Kaur, STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 82, 148–174 (2019). https://doi.org/10.1016/j.engappai.2019.03.021
J.-B. Lamy, Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior of pigeons, in Advances in Nature-Inspired Computing and Applications, ed. by S.K. Shandilya, S. Shandilya, A.K. Nagar (Springer International Publishing, Cham, 2019), pp. 43–60
S. Zangbari Koohi, N.A.W. Abdul Hamid, M. Othman, G. Ibragimov, Raccoon Optimization Algorithm. IEEE Access 7, 5383–5399 (2019). https://doi.org/10.1109/access.2018.2882568
R. Masadeh, Sea Lion Optimization Algorithm. Int. J. Adv. Comput. Sci. Appl. 10, 388–395 (2019)
M. Jain, V. Singh, A. Rani, A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019). https://doi.org/10.1016/j.swevo.2018.02.013
A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inf. 1, 355–366 (2006). https://doi.org/10.1016/j.ecoinf.2006.07.003
A. Karci, B. Alatas, Thinking capability of Saplings Growing up Algorithm, in Intelligent Data Engineering and Automated Learning–IDEAL 2006, ed. by E. Corchado, H. Yin, V. Botti, C. Fyfe (Springer, Berlin Heidelberg, 2006), pp. 386–393
W. Cai, W. Yang, X. Chen, A global optimization algorithm based on plant growth theory: Plant Growth Optimization, in 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA) (2008), pp. 1194–1199
U. Premaratne, J. Samarabandu, T. Sidhu, A new biologically inspired optimization algorithm, in 2009 International Conference on Industrial and Information Systems (ICIIS) (IEEE, 2009), pp. 279–284
Z. Zhao, Z. Cui, J. Zeng, X. Yue, Artificial plant optimization algorithm for constrained optimization problems, in 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications (2011), pp. 120–123
A. Salhi, E.S. Fraga, Nature-inspired optimisation approaches and the new Plant Propagation Algorithm (Yogyakarta, Indonesia, 2011), pp. K2?1–K2?8
R.S. Parpinelli, H.S. Lopes, An eco-inspired evolutionary algorithm applied to numerical optimization, in 2011 Third World Congress on Nature and Biologically Inspired Computing, pp. 466–471 (2011)
Y. Song, L. Liu, H. Ma, A.V. Vasilakos, Physarum Optimization: a new heuristic algorithm to minimal exposure problem, in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (ACM, New York, NY, USA, 2012), pp. 419–422
X.-S. Yang, Flower Pollination Algorithm for global optimization, in Unconventional Computation and Natural Computation, ed. by J. Durand-Lose, N. Jonoska (Springer, Berlin Heidelberg, 2012), pp. 240–249
X. Qi, Y. Zhu, H. Chen et al., An idea based on plant root growth for numerical optimization, in Intelligent Computing Theories and Technology, ed. by D.-S. Huang, K.-H. Jo, Y.-Q. Zhou, K. Han (Springer, Berlin Heidelberg, 2013), pp. 571–578
H. Zhang, Y. Zhu, H. Chen, Root growth model: a novel approach to numerical function optimization and simulation of plant root system. Soft. Comput. 18, 521–537 (2014). https://doi.org/10.1007/s00500-013-1073-z
M. Ghaemi, M.-R. Feizi-Derakhshi, Forest Optimization Algorithm. Expert Syst. Appl. 41, 6676–6687 (2014). https://doi.org/10.1016/j.eswa.2014.05.009
F. Merrikh-Bayat, The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl. Soft Comput. 33, 292–303 (2015). https://doi.org/10.1016/j.asoc.2015.04.048
M. Sulaiman, A. Salhi, A seed-based Plant Propagation Algorithm: the feeding station model. Sci. World J. (2015). https://doi.org/10.1155/2015/904364
M.S. Kiran, TSA: Tree-seed algorithm for continuous optimization. Expert Syst. Appl. 42, 6686–6698 (2015). https://doi.org/10.1016/j.eswa.2015.04.055
H. Moez, A. Kaveh, N. Taghizadieh, Natural forest regeneration algorithm: a new meta-heuristic. Iran. J. Sci. Technol. Trans. Civil Eng. 40, 311–326 (2016). https://doi.org/10.1007/s40996-016-0042-z
Y. Labbi, D.B. Attous, H.A. Gabbar et al., A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016). https://doi.org/10.1016/j.ijepes.2016.01.028
L. Cheng, Q. Zhang, F. Tao et al., A novel search algorithm based on waterweeds reproduction principle for job shop scheduling problem. Int. J. Adv. Manuf. Technol. 84, 405–424 (2016). https://doi.org/10.1007/s00170-015-8023-0
B. Ghojogh, S. Sharifian, H. Mohammadzade, Tree-based optimization: a meta-algorithm for metaheuristic optimization (2018). CoRR arXiv:abs/1809.09284
A. Cheraghalipour, M. Hajiaghaei-Keshteli, M.M. Paydar, Tree Growth Algorithm (TGA): A novel approach for solving optimization problems. Eng. Appl. Artif. Intell. 72, 393–414 (2018). https://doi.org/10.1016/j.engappai.2018.04.021
M. Bidar, H.R. Kanan, M. Mouhoub, S. Sadaoui, Mushroom Reproduction Optimization (MRO): a novel nature-inspired evolutionary algorithm, in 2018 IEEE Congress on Evolutionary Computation (CEC) (2018), pp. 1–10
X. Feng, Y. Liu, H. Yu, F. Luo, Physarum-energy optimization algorithm. Soft. Comput. 23, 871–888 (2019). https://doi.org/10.1007/s00500-017-2796-z
L.N. de Castro, F.J. von Zuben, The clonal selection algorithm with engineering applications, in GECCO’00, Workshop on Artificial Immune Systems and their Applications (2000), pp. 36–37
J.H. Holland, Genetic algorithms. Sci. Am. 267, 66–73 (1992)
R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)
A. Sharma, A new optimizing algorithm using reincarnation concept, in 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI) (2010), pp. 281–288
H.T. Nguyen, B. Bhanu, Zombie Survival Optimization: a Swarm Intelligence Algorithm inspired by zombie foraging, in Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) (IEEE, 2012), pp. 987–990
M. Taherdangkoo, M. Yazdi, M.H. Bagheri, Stem Cells Optimization Algorithm, in Bio-Inspired Computing and Applications, ed. by D.-S. Huang, Y. Gan, P. Premaratne, K. Han (Springer, Berlin Heidelberg, 2012), pp. 394–403
A. Hatamlou, Heart: a novel optimization algorithm for cluster analysis. Prog. Artif. Intell. 2, 167–173 (2014). https://doi.org/10.1007/s13748-014-0046-5
D. Tang, S. Dong, Y. Jiang et al., ITGO: Invasive Tumor Growth Optimization Algorithm. Appl. Soft Comput. 36, 670–698 (2015). https://doi.org/10.1016/j.asoc.2015.07.045
N.S. Jaddi, J. Alvankarian, S. Abdullah, Kidney-inspired algorithm for optimization problems. Commun. Nonlinear Sci. Numer. Simul. 42, 358–369 (2017). https://doi.org/10.1016/j.cnsns.2016.06.006
S. Asil Gharebaghi, M. Ardalan Asl, New meta-heuristic optimization algorithm using neuronal communication. Int. J. Optim. Civil Eng. 7, 413–431 (2017)
V. Osuna-Enciso, E. Cuevas, D. Oliva et al., A bio-inspired evolutionary algorithm: allostatic optimisation. IJBIC 8, 154–169 (2016)
G. Huang, Artificial infectious disease optimization: a SEIQR epidemic dynamic model-based function optimization algorithm. Swarm Evol. Comput. 27, 31–67 (2016). https://doi.org/10.1016/j.swevo.2015.09.007
M.H. Salmani, K. Eshghi, A metaheuristic algorithm based on chemotherapy science: CSA. J. Opti. (2017). https://doi.org/10.1155/2017/3082024
X.-S. Yang, X.-S. He, Mathematical analysis of algorithms: part I, in Mathematical Foundations of Nature-Inspired Algorithms, ed. by X.-S. Yang, X.-S. He (Springer International Publishing, Cham, 2019), pp. 59–73
X.-S. Yang, Nature-inspired mateheuristic algorithms: success and new challenges. J. Comput. Eng. Inf. Technol. 01 (2012). https://doi.org/10.4172/2324-9307.1000e101
X.-S. Yang, Metaheuristic optimization: nature-inspired algorithms and applications, in Artificial Intelligence, Evolutionary Computing and Metaheuristics (Springer, 2013), pp. 405–420
X.-S. Yang, X.-S. He, Applications of nature-inspired algorithms, in Mathematical Foundations of Nature-Inspired Algorithms, ed. by X.-S. Yang, X.-S. He (Springer International Publishing, Cham, 2019), pp. 87–97
T.-H. Yi, H.-N. Li, M. Gu, X.-D. Zhang, Sensor placement optimization in structural health monitoring using niching monkey algorithm. Int. J. Str. Stab. Dyn. 14, 1440012 (2014). https://doi.org/10.1142/s0219455414400124
T.-H. Yi, H.-N. Li, G. Song, X.-D. Zhang, Optimal sensor placement for health monitoring of high-rise structure using adaptive monkey algorithm. Struct. Control Health Monit. 22, 667–681 (2015). https://doi.org/10.1002/stc.1708
I, Hodashinsky, S. Samsonov, Design of fuzzy rule based classifier using the monkey algorithm. Bus. Inform. 61–67 (2017). https://doi.org/10.17323/1998-0663.2017.1.61.67
J. Zhang, Y. Zhang, J. Sun, Intrusion detection technology based on Monkey Algorithm–《Computer Engineering》 2011年14期. Comput. Eng. 37, 131–133 (2011)
K. Kiran, P.D. Shenoy, K.R. Venugopal, L.M. Patnaik, Fault tolerant BeeHive routing in mobile ad-hoc multi-radio network, in 2014 IEEE Region 10 Symposium (2014), pp. 116–120
X. Wang, Q. Chen, R. Zou, M. Huang, An ABC supported QoS multicast routing scheme based on BeeHive algorithm, in Proceedings of the 5th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (ICST, Brussels, Belgium, 2008), pp. 23:1–23:7
W. Li, M. Jiang, Fuzzy-based lion pride optimization for grayscale image segmentation, in 2018 IEEE International Conference of Safety Produce Informatization (IICSPI) (2018), pp. 600–604
H. Hernández, C. Blum, Implementing a model of Japanese Tree Frogs’ calling behavior in sensor networks: a study of possible improvements, in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation. (ACM, New York, NY, USA, 2011), pp. 615–622
H. Hernández, C. Blum, Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs. Swarm Intell. 6, 117–150 (2012). https://doi.org/10.1007/s11721-012-0067-2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Tzanetos, A., Dounias, G. (2020). A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies. In: Tsihrintzis, G., Jain, L. (eds) Machine Learning Paradigms. Learning and Analytics in Intelligent Systems, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-49724-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-49724-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49723-1
Online ISBN: 978-3-030-49724-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)