A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies | SpringerLink
Skip to main content

A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies

  • Chapter
  • First Online:
Machine Learning Paradigms

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 18))

  • 1995 Accesses

Abstract

For many decades, Machine Learning made it possible for humans to map the patterns that govern interpolating problems and also, provided methods to cluster and classify big amount of uncharted data. In recent years, optimization problems which can be mathematically formulated and are hard to be solved with simple or naïve heuristic methods brought up the need for new methods, namely Evolutionary Strategies. These methods are inspired by strategies that are met in flora and fauna in nature. However, a lot of these methods are called nature-inspired when there is no such inspiration in their algorithmic model. Furthermore, even more evolutionary schemes are presented each year, but the lack of applications makes them of no actual utility. In this chapter, all Swarm Intelligence methods as far as the methods that are not inspired by swarms, flocks or groups, but still derive their inspiration by animal behaviors are collected. The applications of these two sub-categories are investigated and some preliminary findings are presented to highlight some main points for Nature Inspired Intelligence utility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Jantzen, Foundations of Fuzzy Control: A Practical Approach, 2nd edn. (Wiley Publishing, 2013)

    Google Scholar 

  2. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MATH  Google Scholar 

  3. Y. Kodratoff, R.S. Michalski (eds.), Machine learning: an artificial intelligence approach, vol. III (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990)

    Google Scholar 

  4. R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds.), Machine Learning: An Artificial Intelligence Approach (Springer, Berlin Heidelberg, 1983)

    Google Scholar 

  5. S.R. Michalski, G.J. Carbonell, M.T. Mitchell (eds.), Machine Learning an Artificial Intelligence Approach, vol. II (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1986)

    MATH  Google Scholar 

  6. T.M. Mitchell, J.G. Carbonell, R.S. Michalski (eds.), Machine Learning: A Guide to Current Research (Springer, US, 1986)

    Google Scholar 

  7. F. Rosenblatt, Two theorems of statistical separability in the perceptron. Mechanisation of thought processes, in Proceedings of a symposium held at the National Physical Laboratory, ed. by DV Blake, Albert M. Uttley (Her Majesty’s Stationery Office, London, 1959), pp. 419–456

    Google Scholar 

  8. P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D Thesis, Harvard University (1974)

    Google Scholar 

  9. B. Widrow, M.E. Hoff, Adaptive switching circuits. Stanford University Ca Stanford Electronics Labs (1960)

    Google Scholar 

  10. L. Magdalena, Fuzzy Rule-Based Systems, in Springer Handbook of Computational Intelligence, ed. by J. Kacprzyk, W. Pedrycz (Springer, Berlin Heidelberg, 2015), pp. 203–218

    Google Scholar 

  11. H.R. Berenji, Fuzzy logic controllers, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 69–96

    Google Scholar 

  12. L.A. Zadeh, Knowledge representation in fuzzy logic, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 1–25

    Google Scholar 

  13. J.M. Keller, R. Krishnapuram, Fuzzy set methods in computer vision, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 121–145

    Google Scholar 

  14. S.K. Pal, Fuzziness, image information and scene analysis, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 147–183

    Google Scholar 

  15. V. Novák, Fuzzy sets in natural language processing, in An Introduction to Fuzzy Logic Applications in Intelligent Systems, ed. by R.R. Yager, L.A. Zadeh (Springer, US, Boston, MA, 1992), pp. 185–200

    Google Scholar 

  16. D. Michie, “Memo” functions and machine learning. Nature 218, 19–22 (1968)

    Google Scholar 

  17. J.H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence (U Michigan Press, Oxford, England, 1975)

    MATH  Google Scholar 

  18. A. Tzanetos, G. Dounias, Nature inspired optimization algorithms related to physical phenomena and laws of science: a survey. Int. J. Artif. Intell. Tools 26, 1750022 (2017). https://doi.org/10.1142/s0218213017500221

    Article  Google Scholar 

  19. A. Chakraborty, A.K. Kar, Swarm Intelligence: a review of algorithms, in Nature-Inspired Computing and Optimization: Theory and Applications, ed. by S. Patnaik, X.-S. Yang, K. Nakamatsu (Springer International Publishing, Cham, 2017), pp. 475–494

    Google Scholar 

  20. R.S. Parpinelli, H.S. Lopes, New inspirations in swarm intelligence: a survey. Int. J. Bio-Inspired Comput. 3, 1–16 (2011). https://doi.org/10.1504/ijbic.2011.0387

  21. A. Slowik, H. Kwasnicka, Nature inspired methods and their industry applications—Swarm Intelligence Algorithms. IEEE Trans. Ind. Inf. 14, 1004–1015 (2018). https://doi.org/10.1109/tii.2017.2786782

    Article  Google Scholar 

  22. B Chawda, J Patel Natural Computing Algorithms–a survey. Int. J. Emerg. Technol. Adv. Eng. 6 (2016)

    Google Scholar 

  23. J. Del Ser, E. Osaba, D. Molina et al., Bio-inspired computation: where we stand and what’s next. Swarm Evol. Comput. 48, 220–250 (2019). https://doi.org/10.1016/j.swevo.2019.04.008

    Article  Google Scholar 

  24. S. Roy, S. Biswas, S.S. Chaudhuri, Nature-inspired Swarm Intelligence and its applications. Int. J. Mod. Educ. Comput. Sci. (IJMECS) 6, 55 (2014)

    Google Scholar 

  25. K.C.B. Steer, A. Wirth, S.K. Halgamuge, The rationale behind seeking inspiration from nature, in Nature-Inspired Algorithms for Optimisation, ed. by R. Chiong (Springer, Berlin Heidelberg, 2009), pp. 51–76

    Google Scholar 

  26. O.K. Erol, I. Eksin, A new optimization method: big bang–big crunch. Adv. Eng. Softw. 37, 106–111 (2006)

    Google Scholar 

  27. A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)

    MathSciNet  Google Scholar 

  28. G. Beni, J. Wang, Swarm Intelligence in cellular robotic systems, in Robots and Biological Systems: Towards a New Bionics?, ed. by P. Dario, G. Sandini, P. Aebischer (Springer, Berlin, Heidelberg, 1993), pp. 703–712

    Google Scholar 

  29. JM Bishop, Stochastic searching networks, in 1989 First IEE International Conference on Artificial Neural Networks, (Conf. Publ. No. 313) (IET, 1989), pp 329–331

    Google Scholar 

  30. V. Bhasin, P. Bedi, A. Singhal, Feature selection for steganalysis based on modified Stochastic Diffusion Search using Fisher score, in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2014), pp. 2323–2330

    Google Scholar 

  31. J.M. Bishop, P. Torr, The stochastic search network, in Neural Networks for Vision, Speech and Natural Language, ed. by R. Linggard, D.J. Myers, C. Nightingale (Springer, Netherlands, Dordrecht, 1992), pp. 370–387

    Google Scholar 

  32. P.D. Beattie, J.M. Bishop, Self-localisation in the ‘Senario’ autonomous wheelchair. J. Intell. Rob. Syst. 22, 255–267 (1998). https://doi.org/10.1023/a:1008033229660

    Article  Google Scholar 

  33. M.M. al-Rifaie, A. Aber, Identifying metastasis in bone scans with Stochastic Diffusion Search, in 2012 International Symposium on Information Technologies in Medicine and Education (2012), pp. 519–523

    Google Scholar 

  34. S. Hurley, R.M. Whitaker, An agent based approach to site selection for wireless networks, in Proceedings of the 2002 ACM Symposium on Applied Computing (ACM, New York, NY, USA, 2002), pp. 574–577

    Google Scholar 

  35. M. Dorigo, Optimization, learning and natural algorithms. Ph.D Thesis, Politecnico di Milano (1992)

    Google Scholar 

  36. M, Dorigo, T. Stützle, ACO algorithms for the traveling salesman problem, in Evolutionary Algorithms in Engineering and Computer Science, ed. by K. Miettinen (K. Miettinen, M. Makela, P. Neittaanmaki, J. Periaux, eds.) (Wiley, 1999), pp. 163–183

    Google Scholar 

  37. C. Fountas, A. Vlachos, Ant Colonies Optimization (ACO) for the solution of the Vehicle Routing Problem (VRP). J. Inf. Optim. Sci. 26, 135–142 (2005). https://doi.org/10.1080/02522667.2005.10699639

    Article  MATH  Google Scholar 

  38. S. Fidanova, M. Durchova, Ant Algorithm for Grid Scheduling Problem, in Large-Scale Scientific Computing, ed. by I. Lirkov, S. Margenov, J. Waśniewski (Springer, Berlin Heidelberg, 2006), pp. 405–412

    Google Scholar 

  39. W.J. Gutjahr, M.S. Rauner, An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Comput. Oper. Res. 34, 642–666 (2007). https://doi.org/10.1016/j.cor.2005.03.018

    Article  MATH  Google Scholar 

  40. W. Wen, C. Wang, D. Wu, Y. Xie (2015) An ACO-based scheduling strategy on load balancing in cloud computing environment, in 2015 Ninth International Conference on Frontier of Computer Science and Technology. pp. 364–369

    Google Scholar 

  41. T. Stützle, M. Dorigo, ACO algorithms for the quadratic assignment problem. New Ideas in Optimization (1999)

    Google Scholar 

  42. L. Lessing, I. Dumitrescu, T. Stützle, A Comparison Between ACO algorithms for the set covering problem, in Ant Colony Optimization and Swarm Intelligence, ed. by M. Dorigo, M. Birattari, C. Blum, et al. (Springer, Berlin Heidelberg, 2004), pp. 1–12

    Google Scholar 

  43. M.A.P. Garcia, O. Montiel, O. Castillo et al., Path planning for autonomous mobile robot navigation with Ant Colony Optimization and fuzzy cost function evaluation. Appl. Soft Comput. 9, 1102–1110 (2009). https://doi.org/10.1016/j.asoc.2009.02.014

    Article  Google Scholar 

  44. D. Martens, M. De Backer, R. Haesen et al., Classification With Ant Colony Optimization. IEEE Trans. Evol. Comput. 11, 651–665 (2007). https://doi.org/10.1109/tevc.2006.890229

    Article  Google Scholar 

  45. A. Shmygelska, H.H. Hoos, An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinform. 6, 30 (2005). https://doi.org/10.1186/1471-2105-6-30

    Article  Google Scholar 

  46. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science. (IEEE, 1995), pp. 39–43

    Google Scholar 

  47. H. Wu, J. Geng, R. Jin et al., An improved comprehensive learning Particle Swarm Optimization and Its application to the semiautomatic design of antennas. IEEE Trans. Antennas Propag. 57, 3018–3028 (2009). https://doi.org/10.1109/tap.2009.2028608

    Article  Google Scholar 

  48. R.C. Eberhart, X. Hu, Human tremor analysis using Particle Swarm Optimization, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3 (1999), pp. 1927–1930

    Google Scholar 

  49. M. Shen, Z. Zhan, W. Chen et al., Bi-velocity discrete Particle Swarm Optimization and its application to multicast routing problem in communication networks. IEEE Trans. Ind. Electron. 61, 7141–7151 (2014). https://doi.org/10.1109/tie.2014.2314075

    Article  Google Scholar 

  50. J. Nenortaite, R. Simutis, Adapting Particle Swarm Optimization to stock markets, in 5th International Conference on Intelligent Systems Design and Applications (ISDA’05) (2005), pp. 520–525

    Google Scholar 

  51. A.A.A. Esmin, G. Lambert-Torres, Loss power minimization using Particle Swarm Optimization, in The 2006 IEEE International Joint Conference on Neural Network Proceedings (2006) pp. 1988–1992

    Google Scholar 

  52. Y. Zhang, D. Gong, J. Zhang, Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103, 172–185 (2013). https://doi.org/10.1016/j.neucom.2012.09.019

    Article  Google Scholar 

  53. C.-J. Liao, Chao-Tang Tseng, P. Luarn, A discrete version of Particle Swarm Optimization for flowshop scheduling problems. Comput. Oper. Res. 34, 3099–3111 (2007). https://doi.org/10.1016/j.cor.2005.11.017

    Article  MATH  Google Scholar 

  54. B. Xue, M. Zhang, W.N. Browne, Particle Swarm Optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43, 1656–1671 (2013). https://doi.org/10.1109/tsmcb.2012.2227469

    Article  Google Scholar 

  55. Y. Wang, J. Lv, L. Zhu, Y. Ma, Crystal structure prediction via Particle-Swarm Optimization. Phys. Rev. B 82, 094116 (2010). https://doi.org/10.1103/physrevb.82.094116

    Article  Google Scholar 

  56. I.-H. Kuo, S.-J. Horng, T.-W. Kao et al., An improved method for forecasting enrollments based on fuzzy time series and Particle Swarm Optimization. Expert Syst. Appl. 36, 6108–6117 (2009). https://doi.org/10.1016/j.eswa.2008.07.043

    Article  Google Scholar 

  57. I. Fister Jr., X-S. Yang, I. Fister et al., A brief review of nature-inspired algorithms for optimization (2013). arXiv:13074186

  58. K.M. Passino, Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22, 52–67 (2002). https://doi.org/10.1109/mcs.2002.1004010

    Article  Google Scholar 

  59. H.F. Wedde, M. Farooq, Y. Zhang, BeeHive: an efficient fault-tolerant routing algorithm inspired by Honey Bee behavior, in Ant Colony Optimization and Swarm Intelligence, ed. by M. Dorigo, M. Birattari, C. Blum, et al. (Springer, Berlin Heidelberg, 2004), pp. 83–94

    Google Scholar 

  60. D. Teodorovic, M. Dell’Orco, Bee colony optimization–a cooperative learning approach to complex transportation problems. Adv. OR AI Methods Trans. 51, 60 (2005)

    Google Scholar 

  61. D.T. Pham, A. Ghanbarzadeh, E. Koç et al., The Bees Algorithm—a novel tool for complex optimisation problems, in Intelligent Production Machines and Systems, ed. by D.T. Pham, E.E. Eldukhri, A.J. Soroka (Elsevier Science Ltd, Oxford, 2006), pp. 454–459

    Google Scholar 

  62. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  63. X.-S. Yang, A new metaheuristic bat-inspired algorithm, in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), ed. by J.R. González, D.A. Pelta, C. Cruz, et al. (Springer, Berlin Heidelberg, 2010), pp. 65–74

    Google Scholar 

  64. R. Akbari, A. Mohammadi, K. Ziarati, A novel bee swarm optimization algorithm for numerical function optimization. Commun. Nonlinear Sci. Numer. Simul. 15, 3142–3155 (2010). https://doi.org/10.1016/j.cnsns.2009.11.003

    Article  MathSciNet  MATH  Google Scholar 

  65. R. Oftadeh, M.J. Mahjoob, M. Shariatpanahi, A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math Appl. 60, 2087–2098 (2010). https://doi.org/10.1016/j.camwa.2010.07.049

    Article  MATH  Google Scholar 

  66. C. Zhaohui, T. Haiyan, Cockroach swarm optimization for vehicle routing problems. Energy Proc. 13, 30–35 (2011). https://doi.org/10.1016/j.egypro.2011.11.007

    Article  Google Scholar 

  67. M.T.M.H. Shirzadi, M.H. Bagheri, A novel meta-heuristic algorithm for numerical function optimization: Blind, Naked Mole-Rats (BNMR) algorithm. SRE 7, 3566–3583 (2012). https://doi.org/10.5897/sre12.514

    Article  Google Scholar 

  68. F. Ahmadi, H. Salehi, K. Karimi, Eurygaster algorithm: a new approach to optimization. Int. J. Comput. Appl. 57, 9–13 (2012)

    Google Scholar 

  69. R.D. Maia, L.N. de Castro, W.M. Caminhas, Bee colonies as model for multimodal continuous optimization: The OptBees algorithm, in 2012 IEEE Congress on Evolutionary Computation (2012), pp. 1–8

    Google Scholar 

  70. R,. Tang, S. Fong, X. Yang, S. Deb, Wolf search algorithm with ephemeral memory, in Seventh International Conference on Digital Information Management (ICDIM 2012) (2012), pp. 165–172

    Google Scholar 

  71. C. Subramanian, A. Sekar, K. Subramanian, A new engineering optimization method: African wild dog algorithm. Int. J. Soft Comput. 8, 163–170 (2013). https://doi.org/10.3923/ijscomp.2013.163.170

    Article  Google Scholar 

  72. Y. Gheraibia, A. Moussaoui, Penguins Search Optimization Algorithm (PeSOA), in Recent Trends in Applied Artificial Intelligence, ed. by M. Ali, T. Bosse, K.V. Hindriks, et al. (Springer, Berlin Heidelberg, 2013), pp. 222–231

    Google Scholar 

  73. P. Wang, Z. Zhu, S. Huang, Seven-Spot Ladybird Optimization: a novel and efficient metaheuristic algorithm for numerical optimization. Sci. World J. (2013). https://doi.org/10.1155/2013/378515

    Article  Google Scholar 

  74. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  75. X. Meng, Y. Liu, X. Gao, H. Zhang, A new bio-inspired algorithm: Chicken Swarm Optimization, in International Conference in Swarm Intelligence (Springer, 2014) pp. 86–94

    Google Scholar 

  76. S.-J. Wu, C.-T. Wu, A bio-inspired optimization for inferring interactive networks: Cockroach swarm evolution. Expert Syst. Appl. 42, 3253–3267 (2015). https://doi.org/10.1016/j.eswa.2014.11.039

    Article  Google Scholar 

  77. S.-J. Wu, C.-T. Wu, Computational optimization for S-type biological systems: Cockroach Genetic Algorithm. Math. Biosci. 245, 299–313 (2013). https://doi.org/10.1016/j.mbs.2013.07.019

    Article  MathSciNet  MATH  Google Scholar 

  78. S. Arora, S. Singh, Butterfly algorithm with Lèvy Flights for global optimization, in 2015 International Conference on Signal Processing, Computing and Control (ISPCC) (2015), pp. 220–224

    Google Scholar 

  79. S. Arora, S. Singh, Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23, 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  80. W. Yong, W. Tao, Z. Cheng-Zhi, H. Hua-Juan, A new stochastic optimization approach—Dolphin Swarm Optimization Algorithm. Int. J. Comput. Intell. Appl. 15, 1650011 (2016). https://doi.org/10.1142/s1469026816500115

    Article  Google Scholar 

  81. A. Brabazon, W. Cui, M. O’Neill, The raven roosting optimisation algorithm. Soft. Comput. 20, 525–545 (2016). https://doi.org/10.1007/s00500-014-1520-5

    Article  Google Scholar 

  82. S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Google Scholar 

  83. X.-B. Meng, X.Z. Gao, L. Lu et al., A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. J. Exp. Theor. Artif. Intell. 28, 673–687 (2016). https://doi.org/10.1080/0952813x.2015.1042530

    Article  Google Scholar 

  84. G. Dhiman, V. Kumar, Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 114, 48–70 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  85. B. Zeng, L. Gao, X. Li, Whale Swarm Algorithm for function optimization, in Intelligent Computing Theories and Application ed. by D.-S. Huang, V. Bevilacqua, P. Premaratne, P. Gupta (Springer International Publishing, 2017), pp. 624–639

    Google Scholar 

  86. D. Zaldívar, B. Morales, A. Rodríguez et al., A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior. Biosystems 174, 1–21 (2018). https://doi.org/10.1016/j.biosystems.2018.09.007

    Article  Google Scholar 

  87. ATS Al-Obaidi, HS Abdullah, O. Ahmed Zied, Meerkat Clan Algorithm: a New Swarm Intelligence Algorithm. Indones. J. Electric. Eng. Comput. Sci. 10, 354–360 (2018). https://doi.org/10.11591/ijeecs.v10.i1

  88. S. Shadravan, H.R. Naji, V.K. Bardsiri, The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 80, 20–34 (2019). https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  89. X.L. Li, Z.J. Shao, J.X. Qian, An optimizing method based on autonomous animates: Fish-swarm Algorithm. Syst. Eng. Theory Pract. 22, 32–38 (2002). https://doi.org/10.12011/1000-6788(2002)11-32

  90. K.N. Krishnanand, D. Ghose, Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent Grid Syst. 2, 209–222 (2006)

    MATH  Google Scholar 

  91. T.C. Havens, C.J. Spain, N.G. Salmon, J.M. Keller, Roach Infestation Optimization, in 2008 IEEE Swarm Intelligence Symposium (2008), pp. 1–7

    Google Scholar 

  92. F. Comellas, J. Martinez-Navarro, Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behaviour, in Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation (ACM, 2009), pp. 811–814

    Google Scholar 

  93. X. Yang, S. Deb, Cuckoo Search via Lévy flights, in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (2009), pp. 210–214

    Google Scholar 

  94. X.-S. Yang, Firefly Algorithms for multimodal optimization, in Stochastic Algorithms: Foundations and Applications, ed. by O. Watanabe, T. Zeugmann (Springer, Berlin Heidelberg, 2009), pp. 169–178

    Google Scholar 

  95. Y. Shiqin, J. Jianjun, Y. Guangxing, A Dolphin Partner Optimization, in 2009 WRI Global Congress on Intelligent Systems (IEEE, 2009), pp. 124–128

    Google Scholar 

  96. S Chen, Locust Swarms-a new multi-optima search technique, in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1745–1752

    Google Scholar 

  97. R. Hedayatzadeh, F.A. Salmassi, M. Keshtgari et al., Termite colony optimization: a novel approach for optimizing continuous problems, in 2010 18th Iranian Conference on Electrical Engineering (2010), pp. 553–558

    Google Scholar 

  98. A.H. Gandomi, A.H. Alavi, Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

    MathSciNet  MATH  Google Scholar 

  99. E. Cuevas, M. Cienfuegos, D. Zaldívar, M. Pérez-Cisneros, A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40, 6374–6384 (2013). https://doi.org/10.1016/j.eswa.2013.05.041

    Article  Google Scholar 

  100. M. Neshat, G. Sepidnam, M. Sargolzaei, Swallow swarm optimization algorithm: a new method to optimization. Neural Comput. Appl. 23, 429–454 (2013). https://doi.org/10.1007/s00521-012-0939-9

    Article  Google Scholar 

  101. J.C. Bansal, H. Sharma, S.S. Jadon, M. Clerc, Spider Monkey Optimization Algorithm for numerical optimization. Memet. Comput. 6, 31–47 (2014). https://doi.org/10.1007/s12293-013-0128-0

    Article  Google Scholar 

  102. J.B. Odili, M.N.M. Kahar, African buffalo optimization (ABO): a new meta-heuristic algorithm. J. Adv. Appl. Sci. 3, 101–106 (2015)

    Google Scholar 

  103. S. Deb, S. Fong, Z. Tian, Elephant Search Algorithm for optimization problems, in 2015 Tenth International Conference on Digital Information Management (ICDIM) (2015), pp. 249–255

    Google Scholar 

  104. G-G. Wang, S. Deb, L.D.S. Coelho, Elephant herding optimization, in 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) (IEEE, 2015) pp. 1–5

    Google Scholar 

  105. R. Omidvar, H. Parvin, F. Rad, SSPCO optimization algorithm (See-See Partridge Chicks Optimization), in 2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI) (2015), pp. 101–106

    Google Scholar 

  106. G.-G. Wang, S. Deb, L.D.S. Coelho, Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 7, 1–23 (2015)

    Google Scholar 

  107. M. Yazdani, F. Jolai, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3, 24–36 (2016)

    Google Scholar 

  108. T. Wu, M. Yao, J. Yang, Dolphin Swarm Algorithm. Front. Inf. Technol. Electron. Eng. 17, 717–729 (2016). https://doi.org/10.1631/fitee.1500287

    Article  Google Scholar 

  109. J. Pierezan, L. Dos Santos Coelho, Coyote optimization algorithm: a new metaheuristic for global optimization problems, in 2018 IEEE Congress on Evolutionary Computation (CEC) (2018), pp 1–8

    Google Scholar 

  110. G. Dhiman, V. Kumar, Emperor penguin optimizer: a bio-inspired algorithm for engineering problems. Knowl. Based Syst. 159, 20–50 (2018). https://doi.org/10.1016/j.knosys.2018.06.001

    Article  Google Scholar 

  111. S. Harifi, M. Khalilian, J. Mohammadzadeh, S. Ebrahimnejad, Emperor Penguins Colony: a new metaheuristic algorithm for optimization. Evol. Intel. 12, 211–226 (2019). https://doi.org/10.1007/s12065-019-00212-x

    Article  Google Scholar 

  112. K. Hyunchul, A. Byungchul, A new evolutionary algorithm based on sheep flocks heredity model, in 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol. 2 (IEEE Cat. No.01CH37233) (2001), pp. 514–517

    Google Scholar 

  113. W.J. Tang, Q.H. Wu, J.R. Saunders, A bacterial swarming algorithm for global optimization, in 2007 IEEE Congress on Evolutionary Computation (2007), pp. 1207–1212

    Google Scholar 

  114. F.J.M. Garcia, J.A.M. Pérez, Jumping frogs optimization: a new swarm method for discrete optimization. Documentos de Trabajo del DEIOC 3 (2008)

    Google Scholar 

  115. T Chen, A simulative bionic intelligent optimization algorithm: artificial searching Swarm Algorithm and its performance analysis, in 2009 International Joint Conference on Computational Sciences and Optimization (2009), pp 864–866

    Google Scholar 

  116. C.J.A.B. Filho, F.B. de Lima Neto, A.J.C.C. Lins et al., Fish School search, in Nature-Inspired Algorithms for Optimisation, ed. by R. Chiong (Springer, Berlin Heidelberg, 2009), pp. 261–277

    Google Scholar 

  117. H. Chen, Y. Zhu, K. Hu, X. He, Hierarchical Swarm Model: a new approach to optimization. Discret. Dyn. Nat. Soc. (2010). https://doi.org/10.1155/2010/379649

    Article  MathSciNet  MATH  Google Scholar 

  118. E. Duman, M. Uysal, A.F. Alkaya, Migrating Birds Optimization: a new meta-heuristic approach and its application to the quadratic assignment problem, in Applications of Evolutionary Computation, ed. by C. Di Chio, S. Cagnoni, C. Cotta, et al. (Springer, Berlin Heidelberg, 2011), pp. 254–263

    Google Scholar 

  119. Y. Marinakis, M. Marinaki, Bumble bees mating optimization algorithm for the vehicle routing problem, in Handbook of Swarm Intelligence: Concepts, Principles and Applications, ed. by B.K. Panigrahi, Y. Shi, M.-H. Lim (Springer, Berlin Heidelberg, 2011), pp. 347–369

    Google Scholar 

  120. T.O. Ting, K.L. Man, S.-U. Guan et al., Weightless Swarm Algorithm (WSA) for dynamic optimization problems, in Network and Parallel Computing, ed. by J.J. Park, A. Zomaya, S.-S. Yeo, S. Sahni (Springer, Berlin Heidelberg, 2012), pp. 508–515

    Google Scholar 

  121. P. Qiao, H. Duan, Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cyber 7, 24–37 (2014). https://doi.org/10.1108/ijicc-02-2014-0005

    Article  MathSciNet  Google Scholar 

  122. X. Li, J. Zhang, M. Yin, Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24, 1867–1877 (2014)

    Google Scholar 

  123. G.-G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization. Neural Comput. Appl. (2015). https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  124. L. Cheng, L. Han, X. Zeng et al., Adaptive Cockroach Colony Optimization for rod-like robot navigation. J. Bionic Eng. 12, 324–337 (2015). https://doi.org/10.1016/s1672-6529(14)60125-6

    Article  Google Scholar 

  125. S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Google Scholar 

  126. S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  127. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili et al., Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  128. S.Z. Mirjalili, S. Mirjalili, S. Saremi et al., Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48, 805–820 (2018). https://doi.org/10.1007/s10489-017-1019-8

    Article  Google Scholar 

  129. F. Fausto, E. Cuevas, A. Valdivia, A. González, A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160, 39–55 (2017). https://doi.org/10.1016/j.biosystems.2017.07.010

    Article  Google Scholar 

  130. Q. Zhang, R. Wang, J. Yang et al., Biology migration algorithm: a new nature-inspired heuristic methodology for global optimization. Soft. Comput. (2018). https://doi.org/10.1007/s00500-018-3381-9

    Article  Google Scholar 

  131. A. Kaveh, S. Mahjoubi, Lion pride optimization algorithm: a meta-heuristic method for global optimization problems. Scientia Iranica 25, 3113–3132 (2018). https://doi.org/10.24200/sci.2018.20833

  132. C.E. Klein, L. dos Santos Coelho, Meerkats-inspired algorithm for global optimization problems, in 26th European Symposium on Artificial Neural Networks, ESANN 2018 (Bruges, Belgium, 25–27 Apr 2018)

    Google Scholar 

  133. M.M. Motevali, A.M. Shanghooshabad, R.Z. Aram, H. Keshavarz, WHO: a new evolutionary algorithm bio-inspired by Wildebeests with a case study on bank customer segmentation. Int. J. Pattern Recogn. Artif. Intell. 33, 1959017 (2018). https://doi.org/10.1142/s0218001419590171

    Article  Google Scholar 

  134. HA Bouarara, RM Hamou, A Abdelmalek, Enhanced Artificial Social Cockroaches (EASC) for modern information retrieval, in Information Retrieval and Management: Concepts, Methodologies. Tools, and Application (2018), pp. 928–960. https://doi.org/10.4018/978-1-5225-5191-1.ch040

  135. A. Kazikova, M. Pluhacek, R. Senkerik, A. Viktorin, Proposal of a new swarm optimization method inspired in bison behavior, in Recent Advances in Soft Computing, ed. by R Matoušek (Springer International Publishing, 2019), pp. 146–156

    Google Scholar 

  136. G. Dhiman, V. Kumar, Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst. 165, 169–196 (2019). https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  137. R. Masadeh, A. Sharieh, B. Mahafzah, Humpback whale optimization algorithm based on vocal behavior for task scheduling in cloud computing. Int. J. Adv. Sci. Technol. 13, 121–140 (2019)

    Google Scholar 

  138. E. Cuevas, F. Fausto, A. González, A Swarm Algorithm inspired by the collective animal behavior, in New Advancements in Swarm Algorithms: Operators and Applications, ed. by E. Cuevas, F. Fausto, A. González (Springer International Publishing, Cham, 2020), pp. 161–188

    Google Scholar 

  139. H.A. Abbass, MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach, in Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1 (IEEE Cat. No.01TH8546, 2001), pp. 207–214

    Google Scholar 

  140. S.D. Muller, J. Marchetto, S. Airaghi, P. Kournoutsakos, Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6, 16–29 (2002). https://doi.org/10.1109/4235.985689

    Article  Google Scholar 

  141. P. Cortés, J.M. García, J. Muñuzuri, L. Onieva, Viral systems: a new bio-inspired optimisation approach. Comput. Oper. Res. 35, 2840–2860 (2008). https://doi.org/10.1016/j.cor.2006.12.018

    Article  MATH  Google Scholar 

  142. S.S. Pattnaik, K.M. Bakwad, B.S. Sohi et al., Swine Influenza Models Based Optimization (SIMBO). Appl. Soft Comput. 13, 628–653 (2013). https://doi.org/10.1016/j.asoc.2012.07.010

    Article  Google Scholar 

  143. M. Jaderyan, H. Khotanlou, Virulence Optimization Algorithm. Appl. Soft Comput. 43, 596–618 (2016). https://doi.org/10.1016/j.asoc.2016.02.038

    Article  Google Scholar 

  144. M.D. Li, H. Zhao, X.W. Weng, T. Han, A novel nature-inspired algorithm for optimization: Virus colony search. Adv. Eng. Softw. 92, 65–88 (2016). https://doi.org/10.1016/j.advengsoft.2015.11.004

    Article  Google Scholar 

  145. S.-C. Chu, P. Tsai, J.-S. Pan, Cat Swarm Optimization, in PRICAI 2006: Trends in Artificial Intelligence, ed. by Q. Yang, G. Webb (Springer, Berlin Heidelberg, 2006), pp. 854–858

    Google Scholar 

  146. M. Eusuff, K. Lansey, F. Pasha, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38, 129–154 (2006). https://doi.org/10.1080/03052150500384759

    Article  MathSciNet  Google Scholar 

  147. O.B. Haddad, A. Afshar, M.A. Mariño, Honey-Bees Mating Optimization (HBMO) Algorithm: a new heuristic approach for water resources optimization. Water Resour. Manag. 20, 661–680 (2006). https://doi.org/10.1007/s11269-005-9001-3

    Article  Google Scholar 

  148. S. He, Q. H. Wu, J.R. Saunders, A novel Group Search Optimizer inspired by animal behavioural ecology, in 2006 IEEE International Conference on Evolutionary Computation (2006), pp. 1272–1278

    Google Scholar 

  149. A. Mucherino, O. Seref, Monkey search: a novel metaheuristic search for global optimization. AIP Conf. Proc. 953, 162–173 (2007). https://doi.org/10.1063/1.2817338

    Article  Google Scholar 

  150. R. Zhao, W. Tang, Monkey algorithm for global numerical optimization. J. Uncertain Syst. 2, 165–176 (2008)

    Google Scholar 

  151. X. Lu, Y. Zhou, A novel global convergence algorithm: Bee Collecting Pollen Algorithm, in Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, ed. by D.-S. Huang, D.C. Wunsch, D.S. Levine, K.-H. Jo (Springer, Berlin Heidelberg, 2008), pp. 518–525

    Google Scholar 

  152. D. Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12, 702–713 (2008)

    Google Scholar 

  153. W.T. Pan, A new evolutionary computation approach: fruit fly optimization algorithm, in Proceedings of the Conference on Digital Technology and Innovation Management (2011)

    Google Scholar 

  154. A.A. Minhas F ul, M. Arif, MOX: A novel global optimization algorithm inspired from Oviposition site selection and egg hatching inhibition in mosquitoes. App. Soft Comput. 11, 4614–4625 (2011). https://doi.org/10.1016/j.asoc.2011.07.020

  155. M.A. Tawfeeq, Intelligent Algorithm for Optimum Solutions Based on the Principles of Bat Sonar (2012). arXiv:12110730

  156. I. Aihara, H. Kitahata, K. Yoshikawa, K. Aihara, Mathematical modeling of frogs’ calling behavior and its possible application to artificial life and robotics. Artif. Life Robot. 12, 29–32 (2008). https://doi.org/10.1007/s10015-007-0436-x

    Article  Google Scholar 

  157. M. El-Dosuky, A. El-Bassiouny, T. Hamza, M. Rashad, New Hoopoe Heuristic Optimization (2012). CoRR arXiv:abs/1211.6410

  158. B.R. Rajakumar, The Lion’s Algorithm: a new nature-inspired search algorithm. Proc. Technol. 6, 126–135 (2012). https://doi.org/10.1016/j.protcy.2012.10.016

    Article  Google Scholar 

  159. A. Mozaffari, A. Fathi, S. Behzadipour, The great salmon run: a novel bio-inspired algorithm for artificial system design and optimisation. IJBIC 4, 286 (2012). https://doi.org/10.1504/ijbic.2012.049889

    Article  Google Scholar 

  160. A.S. Eesa, A.M.A. Brifcani, Z. Orman, Cuttlefish Algorithm–a novel bio-inspired optimization algorithm. Int. J. Sci. Eng. Res. 4, 1978–1986 (2013)

    Google Scholar 

  161. A. Kaveh, N. Farhoudi, A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013). https://doi.org/10.1016/j.advengsoft.2013.03.004

    Article  Google Scholar 

  162. C. Sur, S. Sharma, A. Shukla, Egyptian vulture optimization algorithm–a new nature inspired meta-heuristics for knapsack problem, in The 9th International Conference on Computing and Information Technology (IC2IT2013) (Springer, 2013), pp. 227–237

    Google Scholar 

  163. C. Sur, A. Shukla, New bio-inspired meta-heuristics-Green Herons Optimization Algorithm-for optimization of travelling salesman problem and road network, in Swarm, Evolutionary, and Memetic Computing ed. by B.K. Panigrahi, P.N. Suganthan, S. Das, S.S. Dash (Springer International Publishing, 2013), pp. 168–179

    Google Scholar 

  164. M. Hajiaghaei-Keshteli, M. Aminnayeri, Keshtel Algorithm (KA): a new optimization algorithm inspired by Keshtels’ feeding, in Proceeding in IEEE Conference on Industrial Engineering and Management Systems (IEEE, Rabat, Morocco, 2013), pp. 2249–2253

    Google Scholar 

  165. M. Bidar, H. Rashidy Kanan, Jumper firefly algorithm, in ICCKE 2013 (2013), pp. 267–271

    Google Scholar 

  166. S.L. Tilahun, H.C. Ong, Prey-Predator Algorithm: a new metaheuristic algorithm for optimization problems. Int. J. Info. Tech. Dec. Mak. 14, 1331–1352 (2013). https://doi.org/10.1142/s021962201450031x

    Article  Google Scholar 

  167. H. Mo, L. Xu, Magnetotactic bacteria optimization algorithm for multimodal optimization, in 2013 IEEE Symposium on Swarm Intelligence (SIS) (2013), pp. 240–247

    Google Scholar 

  168. J. An, Q. Kang, L. Wang, Q. Wu, Mussels Wandering Optimization: an ecologically inspired algorithm for global optimization. Cogn. Comput. 5, 188–199 (2013). https://doi.org/10.1007/s12559-012-9189-5

    Article  Google Scholar 

  169. A. Askarzadeh, Bird mating optimizer: an optimization algorithm inspired by bird mating strategies. Commun. Nonlinear Sci. Numer. Simul. 19, 1213–1228 (2014)

    MathSciNet  MATH  Google Scholar 

  170. S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres et al., The Coral Reefs Optimization Algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci. World J. (2014). https://doi.org/10.1155/2014/739768

  171. S. Mohseni, R. Gholami, N. Zarei, A.R. Zadeh, Competition over Resources: A new optimization algorithm based on animals behavioral ecology, in 2014 International Conference on Intelligent Networking and Collaborative Systems (2014), pp. 311–315

    Google Scholar 

  172. M.-Y. Cheng, D. Prayogo, Symbiotic organisms search: A new metaheuristic optimization algorithm. Comput. Struct. 139, 98–112 (2014). https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  173. S. Mirjalili, The Ant Lion Optimizer. Adv. Eng. Softw. 83, 80–98 (2015). https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  174. S.A. Uymaz, G. Tezel, E. Yel, Artificial algae algorithm (AAA) for nonlinear global optimization. Appl. Soft Comput. 31, 153–171 (2015). https://doi.org/10.1016/j.asoc.2015.03.003

    Article  Google Scholar 

  175. C. Chen, Y. Tsai, I. Liu, et al., A novel metaheuristic: Jaguar Algorithm with learning behavior, in 2015 IEEE International Conference on Systems, Man, and Cybernetics (2015), pp. 1595–1600

    Google Scholar 

  176. M.K. Ibrahim, R.S. Ali, Novel optimization algorithm inspired by camel traveling behavior. Iraqi J. Electric. Electron. Eng. 12, 167–177 (2016)

    Google Scholar 

  177. A. Askarzadeh, A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 169, 1–12 (2016). https://doi.org/10.1016/j.compstruc.2016.03.001

    Article  Google Scholar 

  178. A.F. Fard, M. Hajiaghaei-Keshteli, Red Deer Algorithm (RDA); a new optimization algorithm inspired by Red Deers’ mating (2016), pp. 33–34

    Google Scholar 

  179. M. Alauddin, Mosquito flying optimization (MFO), in 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (2016), pp. 79–84

    Google Scholar 

  180. O. Abedinia, N. Amjady, A. Ghasemi, A new metaheuristic algorithm based on shark smell optimization. Complexity 21, 97–116 (2016). https://doi.org/10.1002/cplx.21634

    Article  MathSciNet  Google Scholar 

  181. A. Ebrahimi, E. Khamehchi, Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems. J. Nat. Gas Sci. Eng. 29, 211–222 (2016). https://doi.org/10.1016/j.jngse.2016.01.001

    Article  Google Scholar 

  182. X. Qi, Y. Zhu, H. Zhang, A new meta-heuristic butterfly-inspired algorithm. J. Comput. Sci. 23, 226–239 (2017). https://doi.org/10.1016/j.jocs.2017.06.003

    Article  MathSciNet  Google Scholar 

  183. X. Jiang, S. Li, BAS: Beetle Antennae Search Algorithm for optimization problems (2017). CoRR arXiv:abs/1710.10724

  184. V. Haldar, N. Chakraborty, A novel evolutionary technique based on electrolocation principle of elephant nose fish and shark: fish electrolocation optimization. Soft. Comput. 21, 3827–3848 (2017). https://doi.org/10.1007/s00500-016-2033-1

    Article  Google Scholar 

  185. T.R. Biyanto, Irawan S. Matradji et al., Killer Whale Algorithm: an algorithm inspired by the life of Killer Whale. Procedia Comput. Sci. 124, 151–157 (2017). https://doi.org/10.1016/j.procs.2017.12.141

    Article  Google Scholar 

  186. E. Hosseini, Laying chicken algorithm: a new meta-heuristic approach to solve continuous programming problems. J App. Comput. Math. 6, 10–4172 (2017). https://doi.org/10.4172/2168-9679.1000344

    Article  MathSciNet  Google Scholar 

  187. D. Połap, M. Woz´niak, Polar Bear Optimization Algorithm: meta-heuristic with fast population movement and dynamic birth and death mechanism. Symmetry 9 (2017). https://doi.org/10.3390/sym9100203

  188. S.H. Samareh Moosavi, V. Khatibi Bardsiri, Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation. Eng. Appl. Artif. Intell. 60, 1–15 (2017). https://doi.org/10.1016/j.engappai.2017.01.006

    Article  Google Scholar 

  189. M.H. Sulaiman, Z. Mustaffa, M.M. Saari et al., Barnacles Mating Optimizer: an evolutionary algorithm for solving optimization, in 2018 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS) (IEEE, 2018), pp. 99–104

    Google Scholar 

  190. A. Serani, M. Diez, Dolphin Pod Optimization, in Machine Learning, Optimization, and Big Data ed. by G. Nicosia, P. Pardalos, G. Giuffrida, R. Umeton (Springer International Publishing, 2018), pp. 50–62

    Google Scholar 

  191. C.E. Klein, V.C. Mariani, L.D.S. Coelho, Cheetah Based Optimization Algorithm: a novel swarm intelligence paradigm, in 26th European Symposium on Artificial Neural Networks, ESANN 2018, UCL Upcoming Conferences for Computer Science & Electronics (Bruges, Belgium, 25–27 Apr 2018), pp. 685–690

    Google Scholar 

  192. M.C. Catalbas, A. Gulten, Circular structures of puffer fish: a new metaheuristic optimization algorithm, in 2018 Third International Conference on Electrical and Biomedical Engineering, Clean Energy and Green Computing (EBECEGC). (IEEE, 2018), pp. 1–5

    Google Scholar 

  193. E. Jahani, M. Chizari, Tackling global optimization problems with a novel algorithm–Mouth Brooding Fish algorithm. Appl. Soft Comput. 62, 987–1002 (2018). https://doi.org/10.1016/j.asoc.2017.09.035

    Article  Google Scholar 

  194. N.A. Kallioras, N.D. Lagaros, D.N. Avtzis, Pity Beetle Algorithm–a new metaheuristic inspired by the behavior of bark beetles. Adv. Eng. Softw. 121, 147–166 (2018). https://doi.org/10.1016/j.advengsoft.2018.04.007

    Article  Google Scholar 

  195. T. Wang, L. Yang, Q. Liu, Beetle Swarm Optimization Algorithm: theory and application (2018). arXiv:180800206

  196. A.T. Khan, S. Li, P.S. Stanimirovic, Y. Zhang, Model-free optimization using eagle perching optimizer (2018). CoRR arXiv:abs/1807.02754

  197. M. Jain, S. Maurya, A. Rani, V. Singh, Owl search algorithm: A novel nature-inspired heuristic paradigm for global optimization. J. Intell. Fuzzy Syst. 34, 1573–1582 (2018). https://doi.org/10.3233/jifs-169452

    Article  Google Scholar 

  198. B. Ghojogh, S. Sharifian, Pontogammarus Maeoticus Swarm Optimization: a metaheuristic optimization algorithm (2018). CoRR arXiv:abs/1807.01844

  199. S. Deb, Z. Tian, S. Fong et al., Solving permutation flow-shop scheduling problem by rhinoceros search algorithm. Soft. Comput. 22, 6025–6034 (2018). https://doi.org/10.1007/s00500-018-3075-3

    Article  Google Scholar 

  200. B. Almonacid, R. Soto, Andean Condor Algorithm for cell formation problems. Nat. Comput. 18, 351–381 (2019). https://doi.org/10.1007/s11047-018-9675-0

    Article  MathSciNet  Google Scholar 

  201. H.A. Alsattar, A.A. Zaidan, B.B. Zaidan, Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. (2019). https://doi.org/10.1007/s10462-019-09732-5

    Article  Google Scholar 

  202. A.S. Shamsaldin, T.A. Rashid, R.A. Al-Rashid Agha et al., Donkey and Smuggler Optimization Algorithm: a collaborative working approach to path finding. J. Comput. Design Eng. (2019). https://doi.org/10.1016/j.jcde.2019.04.004

    Article  Google Scholar 

  203. E.H. de Vasconcelos Segundo, V.C. Mariani, L. dos Santos Coelho, Design of heat exchangers using falcon optimization algorithm. Appl. Thermal Eng. (2019). https://doi.org/10.1016/j.applthermaleng.2019.04.038

  204. G, Azizyan, F. Miarnaeimi, M. Rashki, N. Shabakhty, Flying Squirrel Optimizer (FSO): a novel SI-based optimization algorithm for engineering problems. Iran. J. Optim. (2019)

    Google Scholar 

  205. A.A. Heidari, S. Mirjalili, H. Faris et al., Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  206. G. Dhiman, A. Kaur, STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Eng. Appl. Artif. Intell. 82, 148–174 (2019). https://doi.org/10.1016/j.engappai.2019.03.021

    Article  Google Scholar 

  207. J.-B. Lamy, Artificial Feeding Birds (AFB): a new metaheuristic inspired by the behavior of pigeons, in Advances in Nature-Inspired Computing and Applications, ed. by S.K. Shandilya, S. Shandilya, A.K. Nagar (Springer International Publishing, Cham, 2019), pp. 43–60

    Google Scholar 

  208. S. Zangbari Koohi, N.A.W. Abdul Hamid, M. Othman, G. Ibragimov, Raccoon Optimization Algorithm. IEEE Access 7, 5383–5399 (2019). https://doi.org/10.1109/access.2018.2882568

    Article  Google Scholar 

  209. R. Masadeh, Sea Lion Optimization Algorithm. Int. J. Adv. Comput. Sci. Appl. 10, 388–395 (2019)

    Google Scholar 

  210. M. Jain, V. Singh, A. Rani, A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019). https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  211. A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inf. 1, 355–366 (2006). https://doi.org/10.1016/j.ecoinf.2006.07.003

    Article  Google Scholar 

  212. A. Karci, B. Alatas, Thinking capability of Saplings Growing up Algorithm, in Intelligent Data Engineering and Automated Learning–IDEAL 2006, ed. by E. Corchado, H. Yin, V. Botti, C. Fyfe (Springer, Berlin Heidelberg, 2006), pp. 386–393

    Google Scholar 

  213. W. Cai, W. Yang, X. Chen, A global optimization algorithm based on plant growth theory: Plant Growth Optimization, in 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA) (2008), pp. 1194–1199

    Google Scholar 

  214. U. Premaratne, J. Samarabandu, T. Sidhu, A new biologically inspired optimization algorithm, in 2009 International Conference on Industrial and Information Systems (ICIIS) (IEEE, 2009), pp. 279–284

    Google Scholar 

  215. Z. Zhao, Z. Cui, J. Zeng, X. Yue, Artificial plant optimization algorithm for constrained optimization problems, in 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications (2011), pp. 120–123

    Google Scholar 

  216. A. Salhi, E.S. Fraga, Nature-inspired optimisation approaches and the new Plant Propagation Algorithm (Yogyakarta, Indonesia, 2011), pp. K2?1–K2?8

    Google Scholar 

  217. R.S. Parpinelli, H.S. Lopes, An eco-inspired evolutionary algorithm applied to numerical optimization, in 2011 Third World Congress on Nature and Biologically Inspired Computing, pp. 466–471 (2011)

    Google Scholar 

  218. Y. Song, L. Liu, H. Ma, A.V. Vasilakos, Physarum Optimization: a new heuristic algorithm to minimal exposure problem, in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (ACM, New York, NY, USA, 2012), pp. 419–422

    Google Scholar 

  219. X.-S. Yang, Flower Pollination Algorithm for global optimization, in Unconventional Computation and Natural Computation, ed. by J. Durand-Lose, N. Jonoska (Springer, Berlin Heidelberg, 2012), pp. 240–249

    Google Scholar 

  220. X. Qi, Y. Zhu, H. Chen et al., An idea based on plant root growth for numerical optimization, in Intelligent Computing Theories and Technology, ed. by D.-S. Huang, K.-H. Jo, Y.-Q. Zhou, K. Han (Springer, Berlin Heidelberg, 2013), pp. 571–578

    Google Scholar 

  221. H. Zhang, Y. Zhu, H. Chen, Root growth model: a novel approach to numerical function optimization and simulation of plant root system. Soft. Comput. 18, 521–537 (2014). https://doi.org/10.1007/s00500-013-1073-z

    Article  Google Scholar 

  222. M. Ghaemi, M.-R. Feizi-Derakhshi, Forest Optimization Algorithm. Expert Syst. Appl. 41, 6676–6687 (2014). https://doi.org/10.1016/j.eswa.2014.05.009

    Article  Google Scholar 

  223. F. Merrikh-Bayat, The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl. Soft Comput. 33, 292–303 (2015). https://doi.org/10.1016/j.asoc.2015.04.048

    Article  Google Scholar 

  224. M. Sulaiman, A. Salhi, A seed-based Plant Propagation Algorithm: the feeding station model. Sci. World J. (2015). https://doi.org/10.1155/2015/904364

    Article  Google Scholar 

  225. M.S. Kiran, TSA: Tree-seed algorithm for continuous optimization. Expert Syst. Appl. 42, 6686–6698 (2015). https://doi.org/10.1016/j.eswa.2015.04.055

    Article  Google Scholar 

  226. H. Moez, A. Kaveh, N. Taghizadieh, Natural forest regeneration algorithm: a new meta-heuristic. Iran. J. Sci. Technol. Trans. Civil Eng. 40, 311–326 (2016). https://doi.org/10.1007/s40996-016-0042-z

    Article  Google Scholar 

  227. Y. Labbi, D.B. Attous, H.A. Gabbar et al., A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016). https://doi.org/10.1016/j.ijepes.2016.01.028

    Article  Google Scholar 

  228. L. Cheng, Q. Zhang, F. Tao et al., A novel search algorithm based on waterweeds reproduction principle for job shop scheduling problem. Int. J. Adv. Manuf. Technol. 84, 405–424 (2016). https://doi.org/10.1007/s00170-015-8023-0

    Article  Google Scholar 

  229. B. Ghojogh, S. Sharifian, H. Mohammadzade, Tree-based optimization: a meta-algorithm for metaheuristic optimization (2018). CoRR arXiv:abs/1809.09284

  230. A. Cheraghalipour, M. Hajiaghaei-Keshteli, M.M. Paydar, Tree Growth Algorithm (TGA): A novel approach for solving optimization problems. Eng. Appl. Artif. Intell. 72, 393–414 (2018). https://doi.org/10.1016/j.engappai.2018.04.021

    Article  Google Scholar 

  231. M. Bidar, H.R. Kanan, M. Mouhoub, S. Sadaoui, Mushroom Reproduction Optimization (MRO): a novel nature-inspired evolutionary algorithm, in 2018 IEEE Congress on Evolutionary Computation (CEC) (2018), pp. 1–10

    Google Scholar 

  232. X. Feng, Y. Liu, H. Yu, F. Luo, Physarum-energy optimization algorithm. Soft. Comput. 23, 871–888 (2019). https://doi.org/10.1007/s00500-017-2796-z

    Article  MATH  Google Scholar 

  233. L.N. de Castro, F.J. von Zuben, The clonal selection algorithm with engineering applications, in GECCO’00, Workshop on Artificial Immune Systems and their Applications (2000), pp. 36–37

    Google Scholar 

  234. J.H. Holland, Genetic algorithms. Sci. Am. 267, 66–73 (1992)

    Google Scholar 

  235. R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    MathSciNet  MATH  Google Scholar 

  236. A. Sharma, A new optimizing algorithm using reincarnation concept, in 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI) (2010), pp. 281–288

    Google Scholar 

  237. H.T. Nguyen, B. Bhanu, Zombie Survival Optimization: a Swarm Intelligence Algorithm inspired by zombie foraging, in Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012) (IEEE, 2012), pp. 987–990

    Google Scholar 

  238. M. Taherdangkoo, M. Yazdi, M.H. Bagheri, Stem Cells Optimization Algorithm, in Bio-Inspired Computing and Applications, ed. by D.-S. Huang, Y. Gan, P. Premaratne, K. Han (Springer, Berlin Heidelberg, 2012), pp. 394–403

    Google Scholar 

  239. A. Hatamlou, Heart: a novel optimization algorithm for cluster analysis. Prog. Artif. Intell. 2, 167–173 (2014). https://doi.org/10.1007/s13748-014-0046-5

    Article  Google Scholar 

  240. D. Tang, S. Dong, Y. Jiang et al., ITGO: Invasive Tumor Growth Optimization Algorithm. Appl. Soft Comput. 36, 670–698 (2015). https://doi.org/10.1016/j.asoc.2015.07.045

    Article  Google Scholar 

  241. N.S. Jaddi, J. Alvankarian, S. Abdullah, Kidney-inspired algorithm for optimization problems. Commun. Nonlinear Sci. Numer. Simul. 42, 358–369 (2017). https://doi.org/10.1016/j.cnsns.2016.06.006

    Article  Google Scholar 

  242. S. Asil Gharebaghi, M. Ardalan Asl, New meta-heuristic optimization algorithm using neuronal communication. Int. J. Optim. Civil Eng. 7, 413–431 (2017)

    Google Scholar 

  243. V. Osuna-Enciso, E. Cuevas, D. Oliva et al., A bio-inspired evolutionary algorithm: allostatic optimisation. IJBIC 8, 154–169 (2016)

    Google Scholar 

  244. G. Huang, Artificial infectious disease optimization: a SEIQR epidemic dynamic model-based function optimization algorithm. Swarm Evol. Comput. 27, 31–67 (2016). https://doi.org/10.1016/j.swevo.2015.09.007

    Article  Google Scholar 

  245. M.H. Salmani, K. Eshghi, A metaheuristic algorithm based on chemotherapy science: CSA. J. Opti. (2017). https://doi.org/10.1155/2017/3082024

    Article  MathSciNet  MATH  Google Scholar 

  246. X.-S. Yang, X.-S. He, Mathematical analysis of algorithms: part I, in Mathematical Foundations of Nature-Inspired Algorithms, ed. by X.-S. Yang, X.-S. He (Springer International Publishing, Cham, 2019), pp. 59–73

    MATH  Google Scholar 

  247. X.-S. Yang, Nature-inspired mateheuristic algorithms: success and new challenges. J. Comput. Eng. Inf. Technol. 01 (2012). https://doi.org/10.4172/2324-9307.1000e101

  248. X.-S. Yang, Metaheuristic optimization: nature-inspired algorithms and applications, in Artificial Intelligence, Evolutionary Computing and Metaheuristics (Springer, 2013), pp. 405–420

    Google Scholar 

  249. X.-S. Yang, X.-S. He, Applications of nature-inspired algorithms, in Mathematical Foundations of Nature-Inspired Algorithms, ed. by X.-S. Yang, X.-S. He (Springer International Publishing, Cham, 2019), pp. 87–97

    MATH  Google Scholar 

  250. T.-H. Yi, H.-N. Li, M. Gu, X.-D. Zhang, Sensor placement optimization in structural health monitoring using niching monkey algorithm. Int. J. Str. Stab. Dyn. 14, 1440012 (2014). https://doi.org/10.1142/s0219455414400124

    Article  Google Scholar 

  251. T.-H. Yi, H.-N. Li, G. Song, X.-D. Zhang, Optimal sensor placement for health monitoring of high-rise structure using adaptive monkey algorithm. Struct. Control Health Monit. 22, 667–681 (2015). https://doi.org/10.1002/stc.1708

    Article  Google Scholar 

  252. I, Hodashinsky, S. Samsonov, Design of fuzzy rule based classifier using the monkey algorithm. Bus. Inform. 61–67 (2017). https://doi.org/10.17323/1998-0663.2017.1.61.67

  253. J. Zhang, Y. Zhang, J. Sun, Intrusion detection technology based on Monkey Algorithm–《Computer Engineering》 2011年14期. Comput. Eng. 37, 131–133 (2011)

    Google Scholar 

  254. K. Kiran, P.D. Shenoy, K.R. Venugopal, L.M. Patnaik, Fault tolerant BeeHive routing in mobile ad-hoc multi-radio network, in 2014 IEEE Region 10 Symposium (2014), pp. 116–120

    Google Scholar 

  255. X. Wang, Q. Chen, R. Zou, M. Huang, An ABC supported QoS multicast routing scheme based on BeeHive algorithm, in Proceedings of the 5th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (ICST, Brussels, Belgium, 2008), pp. 23:1–23:7

    Google Scholar 

  256. W. Li, M. Jiang, Fuzzy-based lion pride optimization for grayscale image segmentation, in 2018 IEEE International Conference of Safety Produce Informatization (IICSPI) (2018), pp. 600–604

    Google Scholar 

  257. H. Hernández, C. Blum, Implementing a model of Japanese Tree Frogs’ calling behavior in sensor networks: a study of possible improvements, in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation. (ACM, New York, NY, USA, 2011), pp. 615–622

    Google Scholar 

  258. H. Hernández, C. Blum, Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs. Swarm Intell. 6, 117–150 (2012). https://doi.org/10.1007/s11721-012-0067-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Tzanetos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tzanetos, A., Dounias, G. (2020). A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies. In: Tsihrintzis, G., Jain, L. (eds) Machine Learning Paradigms. Learning and Analytics in Intelligent Systems, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-49724-8_15

Download citation

Publish with us

Policies and ethics