Abstract
This research aims to determine the optimal Multi-Layer Feed-Forward Artificial Neural Network (MLFF) capable of accurately estimating the level of seismic damage on buildings, by considering a set of Seismic Intensity Parameters (SIP). Twenty SIP (well established and highly correlated to the structural damage) were utilized. Their corresponding values were calculated for a set of seismic signals. Various combinations of at least five seismic features were performed for the development of the input dataset. A vast number of Artificial Neural Networks (ANNs) were developed and tested. Their output was the level of earthquake Damage on a Reinforced Concrete Frame construction (DRCF) as it is expressed by the Park and Ang overall damage index. The potential contribution of nine distinct Machine Learning functions towards the development of the most robust ANN was also investigated. The results confirm that MLFF networks can provide an accurate estimation of the structural damage caused by an earthquake excitation. Hence, they can be considered as a reliable Computational Intelligence approach for the determination of structures’ seismic vulnerability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alvanitopoulos, P.F., Andreadis, I., Elenas, A.: A genetic algorithm for the classification of earthquake damages in buildings. In: Proceedings of 5th IFIP Conference on Artificial Intelligence Applications and Innovations, Thessaloniki, pp. 341–346 (2009). https://doi.org/10.1007/978-1-4419-0221-4_40
Alvanitopoulos, P.F., Andreadis, I., Elenas, A.: A new algorithm for the classification of earthquake damages in structures. In: Proceedings of the 5th IASTED Conference on Signal Processing, Pattern Recognition and Applications, Innsbruck, pp. 151–156 (2008)
Alvanitopoulos, P.F., Andreadis, I., Elenas, A.: Neuro-fuzzy techniques for the classification of earthquake damages in buildings. Measurement 43(6), 797–809 (2010)
Araya, R., Saragoni, G.R.: Earthquake accelerogram destructiveness potential factor. In: Proceedings of the 8th World Conference on Earthquake Engineering, pp. 835–842. EERI, El Cerrito (1984)
Arias, A.: A measure of earthquake intensity. In: Hansen, R.J. (ed.) Seismic Design for Nuclear Power Plants, pp. 438–483. MIT Press, Cambridge (1970)
ATC 3–06 Publication: Tentative Provisions for the Development of Seismic Regulations for Buildings. US Government Printing Office, Washington, DC (1978)
Cabãnas, L., Benito, B., Herráiz, M.: An approach to the measurement of the potential structural damage of earthquake ground motions. Earthq. Eng. Struct. Dyn. 26(1), 79–92 (1997)
Chopra, A.K.: Dynamics of Structures. Prentice-Hall, Englewood Cliffs (1995)
Elenas, A., Meskouris, K.: Correlation study between seismic acceleration parameters and damage indices of structures. Eng. Struct. 23(6), 698–704 (2001)
Elenas, A.: Correlation between seismic acceleration parameters and overall structural damage indices of buildings. Soil Dyn. Earthq. Eng. 20(1), 93–100 (2000)
Elenas, A.: Interdependency between seismic acceleration parameters and the behavior of structures. Soil Dyn. Earthq. Eng. 16(5), 317–322 (1997)
Elenas, A.: Seismic-parameter-based statistical procedure for the approximate assessment of structural damage. Math. Probl. Eng. 2014, 1–22 (2014). Article Id 916820
Eurocode 2: Design of Concrete Structures—Part 1: General Rules and Rules for Buildings. European Committee for Standardization, Brussels, Belgium (2000)
Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions, and Rules for Buildings. European Committee for Standardization, Brussels, Belgium (2004)
Fajfar, P., Vidic, T., Fischinger, M.: A measure of earthquake motion capacity to damage medium-period structures. Soil Dyn. Earthq. Eng. 9(5), 236–242 (1990)
Haykin, S.: Neural Netw, 2nd edn. Prentice Hall, Upper Saddle River (1999)
Jennings, P.C.: Engineering seismology. In: Kanamori, H., Boschi, E. (eds.) Earthquakes: Observation, Theory and Interpretation, pp. 138–173. Italian Physical Society, Varenna (1982)
Kappos, A.J.: Sensitivity of calculated inelastic seismic response to input motion characteristics. In: Proceedings of the 4th U.S. National Conference on Earthquake Engineering, pp. 25–34. EERI, Oakland (1990)
Lautour, O.R., Omenzetter, P.: Prediction of seismic-induced structural damage using artificial neural networks. Eng. Struct. 31(2), 600–606 (2009)
Martinez-Rueda, J.E.: Scaling procedure for natural accelerograms based on a system of spectrum intensity scales. Earthq. Spectra 14(1), 135–152 (1998)
Meskouris, K., Krätzig, W.B., Hanskötter, U.: Nonlinear computer simulations of seismically excited wall-stiffened reinforced concrete buildings. In: Proceedings of the 2nd International Conference on Structural Dynamics (EURODYN’93), Balkema, Lisse, pp. 49–54 (1993)
Meskouris, K.: Structural Dynamics: Models, Methods. Examples. Ernst & Sohn, Berlin (2000)
Morfidis, K., Kostinakis, K.: Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Eng. Struct. 165, 120–141 (2018)
Nanos, N., Elenas, A., Ponterosso, P.: Correlation of different strong motion duration parameters and damage indicators of reinforced concrete structures. In: Proceedings of the 14th World Conference on Earthquake Engineering (2008)
Park, Y.J., Ang, A.H.-S., Wen, Y.K.: Damage-limiting aseismic design of buildings. Earthq. Spectra 3(1), 1–26 (1987)
Ang, A.H.-S., Park, Y.J., Ang, A.H.-S.: Mechanistic seismic damage model for reinforced concrete. J. Struct. Eng. 111(4), 722–739 (1985)
Reinhorn, A.M., Roh, H., Sivaselvan, M., et al.: IDARC2D version 7.0: a program for the inelastic damage analysis of structures. Technical report MCEER-09-0006, MCEER, State University of New York, Buffalo, NY, USA (2009)
Singh, A., Saxena, P., Lalwani, S.: A study of various training algorithms on neural network for angle based triangular problem. Int. J. Comput. Appl. 71(13), 0975–8887 (2013)
The Math Works Inc.: MATLAB and Statistics Toolbox Release 2016b. Natick, Massachusetts, USA (2016)
Trifunac, M.D., Brady, A.G.: A study on the duration of strong earthquake ground motion. Bull. Seismol. Soc. Am. 65(3), 581–626 (1975)
Tsou, P., Shen, M.H.: Structural damage detection and identification using neural network. In: Proceedings of the 34thAIAA/ASME/ASCEAHS/ASC, Structural, Structural Dynamics and Materials Conference, AIAA/ASME Adaptive Structural Forum, pt. 5 (1993)
Uang, C.M., Bertero, V.V.: Evaluation of seismic energy in structures. Earthq. Eng. Struct. Dynam. 19(1), 77–90 (1990)
Vanmarcke, E.H., Lai, S.S.P.: Strong-motion duration and RMS amplitude of earthquake records. Bull. Seismol. Soc. Am. 70(4), 1293–1307 (1980)
Vui, V.C., Hamid, R.R.: Correlation between seismic parameters of far-fault motions and damage indices of low-rise reinforced concrete frames. Soil Dyn. Earthq. Eng. 66(11), 102–112 (2014)
Wu, X., Ghaboussi, J., Garrett, J.: Use of neural network in detection of structural damage. Comput. Struct. 42(4), 649–659 (1992)
Zhao, J., Ivan, J.N., DeWold, J.T.: Structural damage detection using artificial neural networks. J. Infrastructural Syst. 13(3), 182–189 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tyrtaiou, M., Papaleonidas, A., Elenas, A., Iliadis, L. (2020). Accomplished Reliability Level for Seismic Structural Damage Prediction Using Artificial Neural Networks. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-48791-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-48790-4
Online ISBN: 978-3-030-48791-1
eBook Packages: Computer ScienceComputer Science (R0)