Instance Weighted Clustering: Local Outlier Factor and K-Means | SpringerLink
Skip to main content

Instance Weighted Clustering: Local Outlier Factor and K-Means

  • Conference paper
  • First Online:
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference (EANN 2020)

Abstract

Clustering is an established unsupervised learning method. Substantial research has been carried out in the area of feature weighting, as well instance selection for clustering. Some work has paid attention to instance weighted clustering algorithms using various instance weighting metrics based on distance information, geometric information and entropy information. However, little research has made use of instance density information to weight instances. In this paper we use density to define instance weights. We propose two novel instance weighted clustering algorithms based on Local Outlier Factor and compare them against plain k-means and traditional instance selection.

Thanks you to Innovate UK for your support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Local_outlier_factor.

References

  1. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications, 1st edn. Chapman Hall CRC, Boca Raton (2013)

    Book  Google Scholar 

  2. Alshawabkeh, M., Jang, B., Kaeli, D.: Accelerating the local outlier factor algorithm on a GPU for intrusion detection systems. In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 104–110 (2010)

    Google Scholar 

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)

    Google Scholar 

  4. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: Complete gradient clustering algorithm for features analysis of x-ray images. In: Information Technologies in Biomedicine, pp. 15–24. Springer (2010)

    Google Scholar 

  5. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  6. Efimov, K., Adamyan, L., Spokoiny, V.: Adaptive nonparametric clustering. IEEE Trans. Inf. Theory 65(8), 4875–4892 (2019)

    Article  MathSciNet  Google Scholar 

  7. Gu, L.: A novel sample weighting k-means clustering algorithm based on angles information. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3697–3702. IEEE (2016)

    Google Scholar 

  8. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clusterings. In: Proceedings of the Eleventh International Conference on Information and Knowledge Management, pp. 600–607 (2002)

    Google Scholar 

  9. Hawkins, D.M.: Identification of outliers, vol. 11. Springer (1980)

    Google Scholar 

  10. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  11. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  12. Nock, R., Nielsen, F.: On weighting clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1223–1235 (2006)

    Article  Google Scholar 

  13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Yu, J., Yang, M.S., Lee, E.S.: Sample-weighted clustering methods. Comput. Math. Appl. 62(5), 2200–2208 (2011)

    Article  MathSciNet  Google Scholar 

  15. Zhang, B.: Generalized k-harmonic means. Hewlett-Packard Laboratories Technical Report (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Moggridge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moggridge, P., Helian, N., Sun, Y., Lilley, M., Veneziano, V. (2020). Instance Weighted Clustering: Local Outlier Factor and K-Means. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48791-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48790-4

  • Online ISBN: 978-3-030-48791-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics