Large-Scale Geospatial Data Analysis: Geographic Object-Based Scene Classification in Remote Sensing Images by GIS and Deep Residual Learning | SpringerLink
Skip to main content

Large-Scale Geospatial Data Analysis: Geographic Object-Based Scene Classification in Remote Sensing Images by GIS and Deep Residual Learning

  • Conference paper
  • First Online:
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference (EANN 2020)

Abstract

Recent advances in optical sensor technologies and Geoinformatics, can support very large scale high definition, used for multispectral and panchromatic images. This capability allows the use of remote sensing for the observation of complex earth ecosystems. Application areas include, sustainability of biodiversity, precision agriculture, land, crops and parasites management. Moreover, it supports advanced quantitative studies of biophysical and biogeochemical cycles, in costal or inland waters. The requirement for precise and effective scene classification, can significantly contribute towards the development of new types of decision support systems. This offers considerable advantages to business, science and engineering. This research paper proposes a novel and effective approach based on geographic object-based scene classification in remote sensing images. More specifically, it introduces an important upgrade of the well-known Residual Neural Network (ResNet) architecture. The omission of some layers in the early stages of training, achieves an effective simplification of the network, by eliminating the “Vanishing Gradient Problem” (VGP) which causes efficiency limitations in other “Deep Learning” (DEL) architectures. The use of the Softmax activation function instead of the Sigmoid in the last layer, is the most important innovation of the proposed system. The ResNet has been trained using the novel AdaBound algorithm that employs dynamic bounds on the employed learning rates. The result is the employment of a smooth transition of the stochastic gradient descent, tackling the noise dispersed points of misclassification with great precision. This is something that other spectral classification methods cannot handle. The proposed algorithm was successfully tested, in scene identification from remote sensing images. This confirms that it could be further used in advanced level processes for Large-Scale Geospatial Data Analysis, such as cross-border classification, recognition and monitoring of certain patterns and multi-sensor data fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plaza, A., Plaza, J., Paz, A., Sanchez, S.: Parallel hyperspectral image and signal processing. IEEE Sign. Process. Mag. 28, 119–126 (2011)

    Article  Google Scholar 

  2. Hubert, M.J., Carole, E.: Airborne SAR-efficient signal processing for very high resolution. Proc. IEEE 101, 784–797 (2013)

    Article  Google Scholar 

  3. Zhang, W., Tang, P., Zhao, L.: Remote sensing image scene classification using CNN-CapsNet. Remote Sens. MDPI 11(5), 494 (2019). https://doi.org/10.3390/rs11050494

    Article  Google Scholar 

  4. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, pp. 270–279 (2010)

    Google Scholar 

  5. Penatti, O.A., Nogueira, K., dos Santos, J. A.: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, pp. 44–51 (2015)

    Google Scholar 

  6. Schmidhuber, J.: Deep learning in neural networks: an overview. Neu. Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  7. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient Flow in Recurrent Nets: The Difficulty Of Learning Long-term Dependencies. IEEE Press, New York (2001)

    Google Scholar 

  8. Kolen, J.F., Kremer, S.C.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: A Field Guide to Dynamical Recurrent Networks, pp. 237–243. IEEE, (2001)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv:1512.03385

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Appl. Earth Obs. Remote Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  12. Tao, C., Pan, H., Li, Y., Zou, Z.: Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Explore Geosci. Remote Sens. 8(6), 2381–2392 (2015)

    Google Scholar 

  13. Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification of land cover and crop types using remote sensing data. IEEE Explore Geosci. Remote Sens. 14(5), 778–782 (2017)

    Article  Google Scholar 

  14. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: Geoscience & Remote Sensing (2015)

    Google Scholar 

  15. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on CNN. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)

    Article  Google Scholar 

  16. Romero, A., Gatta, C., Camps-Valls, G.: Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54(3), 1349–1362 (2016)

    Article  Google Scholar 

  17. Mou, L., Ghamisi, P., Zhu, X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)

    Article  Google Scholar 

  18. Mou, L., Ghamisi, P., Zhu, X.: Unsupervised spectral-spatial feature learning via deep residual conv–deconv network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(1), 391–406 (2018)

    Article  Google Scholar 

  19. Glorot X., Bengio Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings International Conference Artificial Intelligence Statistics, pp. 249–256 (2010)

    Google Scholar 

  20. Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic bound of learning rate (2019). arXiv:1902.09843

  21. Grana, M., Veganzons, M.A., Ayerdi, B.: Hyperspectral remote sensing scenes (2020). http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. Grupo De Inteligencia, Computacional

  22. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  23. Agresti, A.: Categorical Data Analysis, p. 413. Wiley, Hoboken (2002). ISBN 978-0-471-36093-3

    Book  Google Scholar 

  24. Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. S.I. Deep Learn. Remote Sens. Image Underst., art. no. 258619 (2015)

    Article  Google Scholar 

  25. Dosovitskiy, A., Springenberg, J. T., Brox, T.: Learning to generate chairs, tables and cars with convolutional networks. In: Proceedings IEEE Conference Computer Vision Pattern Recognition, pp. 1538–1546 (2015)

    Google Scholar 

  26. Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1734–1747 (2016)

    Article  Google Scholar 

  27. Demertzis, K., Iliadis, L.: Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species. In: Proceedings of the INNS Conference Advances in Big Data, Advances in Intelligent Systems and Computing, vol. 529. Springer, Heidelberg (2016)

    Google Scholar 

  28. Demertzis, K., Iliadis, L., Anezakis, V.: A deep spiking machine-hearing system for the case of invasive fish species. In: Proceedings IEEE-SMC Innovations in Intelligent Systems & Applications (INISTA), pp. 23–28 (2017)

    Google Scholar 

  29. Demertzis, K., Tziritas, N., Kikiras, P., Sanchez, S.L., Iliadis, L.: The next generation cognitive security operations center: adaptive analytic lambda architecture for efficient defense against adversarial attacks. Big Data Cogn. Comput. 3, 6 (2019). https://doi.org/10.3390/bdcc3010006

    Article  Google Scholar 

  30. Demertzis, K., Iliadis, L.S., Anezakis, V.D.: Extreme deep learning in biosecurity: the case of machine hearing for marine species identification. J. Inf. Telecommun., 1–19 (2018). Taylor & Francis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazaros Iliadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demertzis, K., Iliadis, L., Pimenidis, E. (2020). Large-Scale Geospatial Data Analysis: Geographic Object-Based Scene Classification in Remote Sensing Images by GIS and Deep Residual Learning. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48791-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48790-4

  • Online ISBN: 978-3-030-48791-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics