Semantic Segmentation Based on Convolution Neural Network for Steel Strip Position Estimation | SpringerLink
Skip to main content

Semantic Segmentation Based on Convolution Neural Network for Steel Strip Position Estimation

  • Conference paper
  • First Online:
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference (EANN 2020)

Abstract

In this paper, a method to access the location of a steel strip in the rolling process was developed. The method consists of a hybrid system composed of a CNN-based semantic segmentation followed by morphological operation and outlier removal. The proposed method was capable of estimating the position of the strip with high precision and low computational burden, making it suitable for the application. The implementation of automatic estimation for the steel strip positioning, replacing the current human operation, can yield substantial costs saving. Future work will be carried out for the and integration of automatic control in the process.

Supported by Budapest University of Technology and Economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almotairi, S., Kareem, G., Aouf, M., Almutairi, B., Salem, M.A.M.: Liver tumor segmentation in CT scans using modified segnet. Sensors 20(5), 1516 (2020)

    Article  Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Chen, F.C., Jahanshahi, M.R.: NB-CNN: deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans. Industr. Electron. 65(5), 4392–4400 (2017)

    Article  Google Scholar 

  4. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  5. DeCost, B.L., Lei, B., Francis, T., Holm, E.A.: High throughput quantitative metallography for complex microstructures using deep learning: a case study in ultrahigh carbon steel. Microsc. Microanal. 25(1), 21–29 (2019)

    Article  Google Scholar 

  6. Ess, A., Müller, T., Grabner, H., Van Gool, L.J.: Segmentation-based urban traffic scene understanding. In: BMVC, vol. 1, p. 2. Citeseer (2009)

    Google Scholar 

  7. de Faria Lemos, A., da Silva, L.A.R., Furtado, E.C., de Paula, H.: Positioning error estimation of steel strips in steckel rolling process using digital image processing. In: 2017 IEEE Industry Applications Society Annual Meeting, pp. 1–8. IEEE (2017)

    Google Scholar 

  8. Ferguson, M., Ak, R., Lee, Y.T.T., Law, K.H.: Automatic localization of casting defects with convolutional neural networks. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1726–1735. IEEE (2017)

    Google Scholar 

  9. Ferreira, A.B.S.: Adaptive fuzzy logic steering controller for a Steckel mill. Ph.D. thesis, University of Johannesburg (2005)

    Google Scholar 

  10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  12. Hoang, D.T., Kang, H.J.: Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 53, 42–50 (2019)

    Article  Google Scholar 

  13. Hong, S., Oh, J., Lee, H., Han, B.: Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3204–3212 (2016)

    Google Scholar 

  14. Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S., Van de Walle, R., Van Hoecke, S.: Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377, 331–345 (2016)

    Article  Google Scholar 

  15. Konovalov, Y.V., Khokhlov, A.: Benefits of steckel mills in rolling. Steel Transl. 43(4), 206–211 (2013)

    Article  Google Scholar 

  16. Kwon, W., Kim, S., Won, S.: Active disturbance rejection control for strip steering control in hot strip finishing mill. IFAC-PapersOnLine 48(17), 42–47 (2015)

    Article  Google Scholar 

  17. Lee, S.J., Yun, J.P., Koo, G., Kim, S.W.: End-to-end recognition of slab identification numbers using a deep convolutional neural network. Knowl.-Based Syst. 132, 1–10 (2017)

    Article  Google Scholar 

  18. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: Multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934 (2017)

    Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  20. Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., Fricout, G.: Steel defect classification with max-pooling convolutional neural networks. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2012)

    Google Scholar 

  21. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000)

    Article  Google Scholar 

  22. Rashed, E.A., Gomez-Tames, J., Hirata, A.: End-to-end semantic segmentation of personalized deep brain structures for non-invasive brain stimulation. Neural Netw. 125, 233–245 (2020)

    Article  Google Scholar 

  23. Roberts, G., Haile, S.Y., Sainju, R., Edwards, D.J., Hutchinson, B., Zhu, Y.: Deep learning for semantic segmentation of defects in advanced stem images of steels. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  24. Sadoughi, M., Hu, C.: Physics-based convolutional neural network for fault diagnosis of rolling element bearings. IEEE Sens. J. 19(11), 4181–4192 (2019)

    Article  Google Scholar 

  25. Sevak, J.S., Kapadia, A.D., Chavda, J.B., Shah, A., Rahevar, M.: Survey on semantic image segmentation techniques. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS), pp. 306–313. IEEE (2017)

    Google Scholar 

  26. Soukup, D., Huber-Mörk, R.: Convolutional neural networks for steel surface defect detection from photometric stereo images. In: International Symposium on Visual Computing, pp. 668–677. Springer (2014)

    Google Scholar 

  27. Treml, M., Arjona-Medina, J., Unterthiner, T., Durgesh, R., Friedmann, F., Schuberth, P., Mayr, A., Heusel, M., Hofmarcher, M., Widrich, M., et al.: Speeding up semantic segmentation for autonomous driving. In: MLITS, NIPS Workshop, vol. 2, p. 7 (2016)

    Google Scholar 

  28. Wei, Y., Chang-Qing, S., Xiao-Jie, G., Zhong-Kui, Z.: Bearing fault diagnosis using convolution neural network and support vector regression. In: DEStech Transactions on Engineering and Technology Research (ICMECA) (2017)

    Google Scholar 

  29. Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A.: Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1378 (2017)

    Google Scholar 

  30. Xu, Z.W., Liu, X.M., Zhang, K.: Mechanical properties prediction for hot rolled alloy steel using convolutional neural network. IEEE Access 7, 47068–47078 (2019)

    Article  Google Scholar 

  31. Yang, S.S., He, Y.H., Wang, Z.L., Zhao, W.S.: A method of steel strip image segmentation based on local gray information. In: 2008 IEEE International Conference on Industrial Technology, pp. 1–4. IEEE (2008)

    Google Scholar 

  32. Youkachen, S., Ruchanurucks, M., Phatrapomnant, T., Kaneko, H.: Defect segmentation of hot-rolled steel strip surface by using convolutional auto-encoder and conventional image processing. In: 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), pp. 1–5. IEEE (2019)

    Google Scholar 

  33. Zhang, W., Li, C., Peng, G., Chen, Y., Zhang, Z.: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 100, 439–453 (2018)

    Article  Google Scholar 

  34. Zhang, Z., Wu, C., Coleman, S., Kerr, D.: DENSE-inception U-net for medical image segmentation. Comput. Methods Programs Biomed. 192, 105395 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

The research reported in this paper was supported by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of Artificial Intelligence research area of Budapest University of Technology and Economics (BME FIKP-MI/FM); by the National Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program); by the János Bolyai Scholarship of the Hungarian Academy of Sciences to BVN; and by the Stipendium Hungaricum Scholarship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline de Faria Lemos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Faria Lemos, A., Nagy, B.V. (2020). Semantic Segmentation Based on Convolution Neural Network for Steel Strip Position Estimation. In: Iliadis, L., Angelov, P., Jayne, C., Pimenidis, E. (eds) Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference. EANN 2020. Proceedings of the International Neural Networks Society, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-48791-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48791-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48790-4

  • Online ISBN: 978-3-030-48791-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics