Multitask Hopfield Networks | SpringerLink
Skip to main content

Multitask Hopfield Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Abstract

Multitask algorithms typically use task similarity information as a bias to speed up and improve the performance of learning processes. Tasks are learned jointly, sharing information across them, in order to construct models more accurate than those learned separately over single tasks. In this contribution, we present the first multitask model, to our knowledge, based on Hopfield Networks (HNs), named HoMTask. We show that by appropriately building a unique HN embedding all tasks, a more robust and effective classification model can be learned. HoMTask is a transductive semi-supervised parametric HN, that minimizes an energy function extended to all nodes and to all tasks under study. We provide theoretical evidence that the optimal parameters automatically estimated by HoMTask make coherent the model itself with the prior knowledge (connection weights and node labels). The convergence properties of HNs are preserved, and the fixed point reached by the network dynamics gives rise to the prediction of unlabeled nodes. The proposed model improves the classification abilities of singletask HNs on a preliminary benchmark comparison, and achieves competitive performance with state-of-the-art semi-supervised graph-based algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008)

    Article  Google Scholar 

  4. Argyriou, A., et al.: A spectral regularization framework for multi-task structure learning. In: Advances in Neural Information Processing Systems, pp. 25–32 (2007)

    Google Scholar 

  5. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)

    Article  Google Scholar 

  6. Bertoni, A., Frasca, M., Valentini, G.: COSNet: a cost sensitive neural network for semi-supervised learning in graphs. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 219–234. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_24

    Chapter  Google Scholar 

  7. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  8. Chen, J., Zhou, J., Ye, J.: Integrating low-rank and group-sparse structures for robust multi-task learning. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 42–50. ACM (2011)

    Google Scholar 

  9. Daumé III, H.: Bayesian multitask learning with latent hierarchies. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 135–142. AUAI Press (2009)

    Google Scholar 

  10. Evgeniou, A., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, vol. 19, p. 41 (2007)

    Google Scholar 

  11. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6, 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD KDD 2004, pp. 109–117. ACM (2004)

    Google Scholar 

  13. Frasca, M., Bertoni, A., et al.: A neural network algorithm for semi-supervised node label learning from unbalanced data. Neural Netw. 43, 84–98 (2013)

    Article  MATH  Google Scholar 

  14. Frasca, M., Cesa-Bianchi, N.: Multitask protein function prediction through task dissimilarity. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(5), 1550–1560 (2018). https://doi.org/10.1109/TCBB.2017.2684127

  15. Frasca, M.: Gene2DisCo: gene to disease using disease commonalities. Artif. Intell. Med. 82, 34–46 (2017). https://doi.org/10.1016/j.artmed.2017.08.001

    Article  Google Scholar 

  16. Frasca, M., Bassis, S., Valentini, G.: Learning node labels with multi-category Hopfield networks. Neural Comput. Appl. 27(6), 1677–1692 (2015). https://doi.org/10.1007/s00521-015-1965-1

    Article  Google Scholar 

  17. Frasca, M., Bertoni, A., Sion, A.: A neural procedure for gene function prediction. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F. (eds.) Neural Nets and Surroundings, pp. 179–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35467-0_19

    Chapter  Google Scholar 

  18. Frasca, M., Pavesi, G.: A neural network based algorithm for gene expression prediction from chromatin structure. In: IJCNN, pp. 1–8. IEEE (2013). https://doi.org/10.1109/IJCNN.2013.6706954

  19. Greene, W.H.: Econometric Analysis, 5th edn. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  20. Guo, S., Zoeter, O., Archambeau, C.: Sparse bayesian multi-task learning. In: Advances in Neural Information Processing Systems, pp. 1755–1763 (2011)

    Google Scholar 

  21. Hopfield, J.J.: Neural networks and physical systems with emergent collective compatational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, X., Wang, T.: Training the Hopfield neural network for classification using a STDP-like rule. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing, pp. 737–744. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70090-8_74

    Chapter  Google Scholar 

  23. Jacob, L., Vert, J.P., Bach, F.R.: Clustered multi-task learning: a convex formulation. In: Advances in Neural Information Processing Systems, pp. 745–752 (2009)

    Google Scholar 

  24. Jacyna, G.M., Malaret, E.R.: Classification performance of a hopfield neural network based on a Hebbian-like learning rule. IEEE Trans. Inf. Theory 35(2), 263–280 (1989). https://doi.org/10.1109/18.32122

    Article  MathSciNet  Google Scholar 

  25. Jiang, Y., Oron, T.R., et al.: An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 17(1), 184 (2016)

    Article  Google Scholar 

  26. Kang, Z., Grauman, K., Sha, F.: Learning with whom to share in multi-task feature learning. In: Proceedings of the 28th ICML, pp. 521–528 (2011)

    Google Scholar 

  27. Karaoz, U., et al.: Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl Acad. Sci. USA 101, 2888–2893 (2004)

    Article  Google Scholar 

  28. Kordos, M., Duch, W.: Variable step search algorithm for feedforward networks. Neurocomputing 71(13–15), 2470–2480 (2008)

    Article  Google Scholar 

  29. Lan, L., Djuric, N., Guo, Y., Vucetic, S.: MS-kNN: protein function prediction by integrating multiple data sources. BMC Bioinform. 14(Suppl 3), S8 (2013)

    Article  Google Scholar 

  30. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, Budapest, vol. 2, pp. 353–398 (1996)

    Google Scholar 

  31. Mostafavi, S., Morris, Q.: Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics 26(14), 1759–1765 (2010)

    Article  Google Scholar 

  32. Ning, X., Karypis, G.: Multi-task learning for recommender system. In: Proceedings of 2nd Asian Conference on Machine Learning (ACML 2010), vol. 13, pp. 269–284 (2010)

    Google Scholar 

  33. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, e0118432 (2015)

    Article  Google Scholar 

  34. Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in yeast. Nat. Biotechnol. 18(12), 1257–1261 (2000)

    Article  Google Scholar 

  35. Szklarczyk, D., et al.: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl. Acids Res. 43(D1), D447–D452 (2015)

    Article  Google Scholar 

  36. Valentini, G., et al.: RANKS: a flexible tool for node label ranking and classification in biological networks. Bioinformatics 32, 2872–2874 (2016)

    Article  Google Scholar 

  37. Vascon, S., Frasca, M., Tripodi, R., Valentini, G., Pelillo, M.: Protein function prediction as a graph-transduction game. Pattern Recogn. Lett. (2018, in press)

    Google Scholar 

  38. Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classification with Dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian process from multiple tasks. In: Proceedings of the 22nd International Conference on Pattern Recognition, pp. 1012–1019. ACM (2005)

    Google Scholar 

  40. Yu, S., Tresp, V., Yu, K.: Robust multi-task learning with t-processes. In: Proceedings of the 24th International Conference on Machine Learning, pp. 1103–1110. ACM (2007)

    Google Scholar 

  41. Zhang, Y., Schneider, J.G.: Learning multiple tasks with a sparse matrix-normal penalty. In: Advances in Neural Information Processing Systems, pp. 2550–2558 (2010)

    Google Scholar 

  42. Zhou, J., Chen, J., Ye, J.: Clustered multi-task learning via alternating structure optimization. In: Advances in Neural Information Processing Systems, pp. 702–710 (2011)

    Google Scholar 

  43. Zhu, X., et al.: Semi-supervised learning with Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning, pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Frasca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frasca, M., Grossi, G., Valentini, G. (2020). Multitask Hopfield Networks. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11907. Springer, Cham. https://doi.org/10.1007/978-3-030-46147-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46147-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46146-1

  • Online ISBN: 978-3-030-46147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics