Abstract
Multitask algorithms typically use task similarity information as a bias to speed up and improve the performance of learning processes. Tasks are learned jointly, sharing information across them, in order to construct models more accurate than those learned separately over single tasks. In this contribution, we present the first multitask model, to our knowledge, based on Hopfield Networks (HNs), named HoMTask. We show that by appropriately building a unique HN embedding all tasks, a more robust and effective classification model can be learned. HoMTask is a transductive semi-supervised parametric HN, that minimizes an energy function extended to all nodes and to all tasks under study. We provide theoretical evidence that the optimal parameters automatically estimated by HoMTask make coherent the model itself with the prior knowledge (connection weights and node labels). The convergence properties of HNs are preserved, and the fixed point reached by the network dynamics gives rise to the prediction of unlabeled nodes. The proposed model improves the classification abilities of singletask HNs on a preliminary benchmark comparison, and achieves competitive performance with state-of-the-art semi-supervised graph-based algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)
Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)
Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243–272 (2008)
Argyriou, A., et al.: A spectral regularization framework for multi-task structure learning. In: Advances in Neural Information Processing Systems, pp. 25–32 (2007)
Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25(1), 25–29 (2000)
Bertoni, A., Frasca, M., Valentini, G.: COSNet: a cost sensitive neural network for semi-supervised learning in graphs. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6911, pp. 219–234. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23780-5_24
Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
Chen, J., Zhou, J., Ye, J.: Integrating low-rank and group-sparse structures for robust multi-task learning. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 42–50. ACM (2011)
Daumé III, H.: Bayesian multitask learning with latent hierarchies. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 135–142. AUAI Press (2009)
Evgeniou, A., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, vol. 19, p. 41 (2007)
Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6, 615–637 (2005)
Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD KDD 2004, pp. 109–117. ACM (2004)
Frasca, M., Bertoni, A., et al.: A neural network algorithm for semi-supervised node label learning from unbalanced data. Neural Netw. 43, 84–98 (2013)
Frasca, M., Cesa-Bianchi, N.: Multitask protein function prediction through task dissimilarity. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(5), 1550–1560 (2018). https://doi.org/10.1109/TCBB.2017.2684127
Frasca, M.: Gene2DisCo: gene to disease using disease commonalities. Artif. Intell. Med. 82, 34–46 (2017). https://doi.org/10.1016/j.artmed.2017.08.001
Frasca, M., Bassis, S., Valentini, G.: Learning node labels with multi-category Hopfield networks. Neural Comput. Appl. 27(6), 1677–1692 (2015). https://doi.org/10.1007/s00521-015-1965-1
Frasca, M., Bertoni, A., Sion, A.: A neural procedure for gene function prediction. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F. (eds.) Neural Nets and Surroundings, pp. 179–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35467-0_19
Frasca, M., Pavesi, G.: A neural network based algorithm for gene expression prediction from chromatin structure. In: IJCNN, pp. 1–8. IEEE (2013). https://doi.org/10.1109/IJCNN.2013.6706954
Greene, W.H.: Econometric Analysis, 5th edn. Prentice Hall, Upper Saddle River (2003)
Guo, S., Zoeter, O., Archambeau, C.: Sparse bayesian multi-task learning. In: Advances in Neural Information Processing Systems, pp. 1755–1763 (2011)
Hopfield, J.J.: Neural networks and physical systems with emergent collective compatational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982)
Hu, X., Wang, T.: Training the Hopfield neural network for classification using a STDP-like rule. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing, pp. 737–744. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70090-8_74
Jacob, L., Vert, J.P., Bach, F.R.: Clustered multi-task learning: a convex formulation. In: Advances in Neural Information Processing Systems, pp. 745–752 (2009)
Jacyna, G.M., Malaret, E.R.: Classification performance of a hopfield neural network based on a Hebbian-like learning rule. IEEE Trans. Inf. Theory 35(2), 263–280 (1989). https://doi.org/10.1109/18.32122
Jiang, Y., Oron, T.R., et al.: An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol. 17(1), 184 (2016)
Kang, Z., Grauman, K., Sha, F.: Learning with whom to share in multi-task feature learning. In: Proceedings of the 28th ICML, pp. 521–528 (2011)
Karaoz, U., et al.: Whole-genome annotation by using evidence integration in functional-linkage networks. Proc. Natl Acad. Sci. USA 101, 2888–2893 (2004)
Kordos, M., Duch, W.: Variable step search algorithm for feedforward networks. Neurocomputing 71(13–15), 2470–2480 (2008)
Lan, L., Djuric, N., Guo, Y., Vucetic, S.: MS-kNN: protein function prediction by integrating multiple data sources. BMC Bioinform. 14(Suppl 3), S8 (2013)
Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, Budapest, vol. 2, pp. 353–398 (1996)
Mostafavi, S., Morris, Q.: Fast integration of heterogeneous data sources for predicting gene function with limited annotation. Bioinformatics 26(14), 1759–1765 (2010)
Ning, X., Karypis, G.: Multi-task learning for recommender system. In: Proceedings of 2nd Asian Conference on Machine Learning (ACML 2010), vol. 13, pp. 269–284 (2010)
Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, e0118432 (2015)
Schwikowski, B., Uetz, P., Fields, S.: A network of protein-protein interactions in yeast. Nat. Biotechnol. 18(12), 1257–1261 (2000)
Szklarczyk, D., et al.: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl. Acids Res. 43(D1), D447–D452 (2015)
Valentini, G., et al.: RANKS: a flexible tool for node label ranking and classification in biological networks. Bioinformatics 32, 2872–2874 (2016)
Vascon, S., Frasca, M., Tripodi, R., Valentini, G., Pelillo, M.: Protein function prediction as a graph-transduction game. Pattern Recogn. Lett. (2018, in press)
Xue, Y., Liao, X., Carin, L., Krishnapuram, B.: Multi-task learning for classification with Dirichlet process priors. J. Mach. Learn. Res. 8, 35–63 (2007)
Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian process from multiple tasks. In: Proceedings of the 22nd International Conference on Pattern Recognition, pp. 1012–1019. ACM (2005)
Yu, S., Tresp, V., Yu, K.: Robust multi-task learning with t-processes. In: Proceedings of the 24th International Conference on Machine Learning, pp. 1103–1110. ACM (2007)
Zhang, Y., Schneider, J.G.: Learning multiple tasks with a sparse matrix-normal penalty. In: Advances in Neural Information Processing Systems, pp. 2550–2558 (2010)
Zhou, J., Chen, J., Ye, J.: Clustered multi-task learning via alternating structure optimization. In: Advances in Neural Information Processing Systems, pp. 702–710 (2011)
Zhu, X., et al.: Semi-supervised learning with Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning, pp. 912–919 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Frasca, M., Grossi, G., Valentini, G. (2020). Multitask Hopfield Networks. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11907. Springer, Cham. https://doi.org/10.1007/978-3-030-46147-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-46147-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-46146-1
Online ISBN: 978-3-030-46147-8
eBook Packages: Computer ScienceComputer Science (R0)