Sequence Independent Lifting for the Set of Submodular Maximization Problem | SpringerLink
Skip to main content

Sequence Independent Lifting for the Set of Submodular Maximization Problem

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12125))

Abstract

We study the polyhedral structure of a mixed 0-1 set arising in the submodular maximization problem, given by \(P = \{(w,x)\in \mathbb {R}\times \{0,1\}^n: w\le f(x), x\in \mathcal {X}\}\), where submodular function f(x) is represented by a concave function composed with a linear function, and \(\mathcal {X}\) is the feasible region of binary variables x. For \(\mathcal {X}= \{0,1\}^n\), two families of facet-defining inequalities are proposed for the convex hull of P through restriction and lifting using submodular inequalities. When \(\mathcal {X}\) is a partition matroid, we propose a new class of facet-defining inequalities for the convex hull of P through multidimensional sequence independent lifting. Our results enable us to unify and generalize the existing results on valid inequalities for the mixed 0-1 knapsack. Finally, we perform some preliminary computational experiments to illustrate the superiority of our facet-defining inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7435
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9294
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Math. Program. 128(1–2), 149–169 (2011). https://doi.org/10.1007/s10107-009-0298-1

    Article  MathSciNet  MATH  Google Scholar 

  2. Angulo, A., Espinoza, D., Palma, R.: Sequence independent lifting for mixed Knapsack problems with GUB constraints. Math. Program. 154(1–2), 55–80 (2015). https://doi.org/10.1007/s10107-015-0902-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Atamtürk, A., Küçükyavuz, S., Tezel, B.: Path cover and path pack inequalities for the capacitated fixed-charge network flow problem. SIAM J. Optimiz. 27(3), 1943–1976 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chen, L., Xu, J., Lu, Z.: Contextual combinatorial multi-armed bandits with volatile arms and submodular reward. In: Advances in Neural Information Processing Systems, pp. 3247–3256 (2018)

    Google Scholar 

  5. Dolhansky, B.W., Bilmes, J.A.: Deep submodular functions: definitions and learning. In: Advances in Neural Information Processing Systems, pp. 3404–3412 (2016)

    Google Scholar 

  6. El-Arini, K., Veda, G., Shahaf, D., Guestrin, C.: Turning down the noise in the blogosphere. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 289–298. ACM (2009)

    Google Scholar 

  7. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Sequence independent lifting in mixed integer programming. J. Comb. Optimiz. 4(1), 109–129 (2000). https://doi.org/10.1023/A:1009841107478

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, J., Deshpande, A.: Maximizing expected utility for stochastic combinatorial optimization problems. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 797–806. IEEE (2011)

    Google Scholar 

  9. Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 510–520. Association for Computational Linguistics (2011)

    Google Scholar 

  10. Marchand, H., Wolsey, L.A.: The 0-1 Knapsack problem with a single continuous variable. Math. Program. 85(1), 15–33 (1999). https://doi.org/10.1007/s101070050044

    Article  MathSciNet  MATH  Google Scholar 

  11. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  Google Scholar 

  12. Stobbe, P., Krause, A.: Efficient minimization of decomposable submodular functions. In: Advances in Neural Information Processing Systems, pp. 2208–2216 (2010)

    Google Scholar 

  13. Wolsey, L.A.: Submodularity and valid inequalities in capacitated fixed charge networks. Oper. Res. Lett. 8(3), 119–124 (1989)

    Article  MathSciNet  Google Scholar 

  14. Yu, J., Ahmed, S.: Maximizing a class of submodular utility functions with constraints. Math. Program. 162(1–2), 145–164 (2017). https://doi.org/10.1007/s10107-016-1033-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Zeng, B., Richard, J.-P.P.: A framework to derive multidimensional superadditive lifting functions and its applications. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 210–224. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72792-7_17

    Chapter  Google Scholar 

  16. Zeng, B., Richard, J.P.P.: A polyhedral study on 0–1 knapsack problems with disjoint cardinality constraints: strong valid inequalities by sequence-independent lifting. Discrete Optimiz. 8(2), 259–276 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zeng .

Editor information

Editors and Affiliations

Appendices

A Proof of Theorem 1

Lemma 1

Let \(z \in [A_{k}, A_{k+1}]\) for some \(k\ge 1\). Then for any \(\varDelta \ge 0\) and \(z + \varDelta \le A_{k+1}\), we have

$$\begin{aligned} \phi (z+\varDelta ) - \phi (z) \le \phi (z - \sum _{j = \ell }^{k+1} a_j + \varDelta ) - \phi (z - \sum _{j = \ell }^{k+1} a_j) \quad \forall \ell = 2,\ldots , k+1. \end{aligned}$$

Proof

It suffices to show the statement holds for \(\ell = k+1\). Since \(z \in [A_k, A_{k+1}]\) and \(z+\varDelta \le A_{k+1}\), then \(z-a_{k+1} \in [A_{k-1}, A_{k}]\) and \(z+\varDelta -a_{k+1}\le A_k\). Therefore,

$$\begin{aligned} \phi (z+\varDelta ) - \phi (z)&= g(\varOmega +v_k - a_k+ \varDelta ) - g(\varOmega +v_k-a_k) \\&\le g(\varOmega + v_{k-1} -a_{k+1}+ \varDelta ) - g(\varOmega + v_{k-1} -a_{k+1}) \\&= \phi (z - a_{k+1} + \varDelta ) - \phi (z - a_{k+1}), \end{aligned}$$

where \(\varOmega = z - A_{k-1}\), the inequality follows from \(v_{k-1} + a_k \le v_k+a_{k+1}\) and the concavity of g (i.e., \(g(z_0+\varDelta ) - g(z_0) \ge g(z_1 + \varDelta ) - g(z_1)\) if \(z_0\le z_1\) and \(\varDelta \ge 0\)).    \(\square \)

Lemma 2

Let \(\varDelta \in [0, a_{k+1}]\) for some \(k\ge 0\). Then for any \(z \ge A_{k}\), we have

$$\begin{aligned} \phi (A_{k} + \varDelta ) - \phi (A_{k}) \ge \phi (z + \varDelta ) - \phi (z). \end{aligned}$$

Proof

Suppose \(z \in [A_{k_1}, A_{k_1+1}]\) and \(z + \varDelta \in [A_{k_2}, A_{k_2+1}]\), where \(k \le k_1 \le k_2\). We establish the result for each \(k_2 - k_1\) by induction.

  • If \(k_2 = k_1\), then based on Lemma 1, we have

    $$\begin{aligned} \phi (z + \varDelta ) - \phi (z)&\le \phi (z - \sum _{j=k+2}^{k_1+1} a_j+\varDelta ) - \phi (z - \sum _{j=k+2}^{k_1+1} a_j) \\&= g(\varOmega + v_k + \varDelta )- g(\varOmega + v_k) \\&\le g(v_k+\varDelta ) - g(v_k) = \phi (A_{k} +\varDelta ) - \phi (A_{k}), \end{aligned}$$

    where \(\varOmega = z-A_k-\sum _{j=k+2}^{k_1+1} a_j\), the second inequality follows from \(a_{k+1} \ge a_{k_1+1}\) and \(\varOmega = z - A_k - \sum _{j=k+2}^{k_1+1} a_j \ge z -A_k - \sum _{j=k+1}^{k_1} a_j \ge 0\).

  • If the statement holds for \(k_2 - k_1 = m\), then we show that the statement also holds for \(k_2 - k_1 = m+1\). Let \(\varDelta ' = A_{k_1+1} - z\), then \(\varDelta \ge \varDelta '\). Since \(\varDelta \in [0, a_{k+1}]\) and \(A_{k_1+1} - \sum _{j=k+2}^{k_1+1} a_j = A_{k+1} \ge A_{k} + \varDelta \), we have

    $$\begin{aligned} \phi (A_{k} + \varDelta ) - \phi (A_{k} + \varDelta - \varDelta ')&\ge \phi (A_{k+1}) - \phi (A_{k+1} - \varDelta ') \\&= \phi (A_{k_1+1} -\sum _{j=k+2}^{k_1+1} a_j) - \phi (z - \sum _{j=k+2}^{k_1+1} a_j) \\&\ge \phi (A_{k_1+1}) - \phi (z), \end{aligned}$$

    where the first inequality follows from that \(\phi \) is concave on \([A_k, A_{k+1}]\). Let \(z' = A_{k_1+1}\), then \(z' \in [A_{k_1+1}, A_{k_1+2}]\). Since \(k_2 - (k_1 + 1)= m\), by the induction hypothesis, we have

    $$\begin{aligned} \phi (A_{k} + \varDelta - \varDelta ') - \phi (A_{k}) \ge \phi (z' + \varDelta - \varDelta ') - \phi (z') = \phi (z+\varDelta ) - \phi (A_{k_1+1}). \end{aligned}$$

    Summing the above two inequalities, we obtain the desired inequality.    \(\square \)

Proof

(Theorem 1). To show that \(\phi \) is subadditive on \([0, +\infty )\), it is sufficient to prove that the inequality \(\phi (z) - \phi (0) \ge \phi (z+\varDelta ) - \phi (\varDelta )\) holds for any \(z, \varDelta \ge 0\).

First, by Lemma 2, we have that for any \(\varDelta \ge 0\),

$$\begin{aligned} \phi (A_{j+1}) - \phi (A_{j}) \ge \phi (A_{j+1}+\varDelta ) - \phi (A_{j}+\varDelta ) \quad \forall j = 0, 1, \ldots . \end{aligned}$$
(11)

Suppose \(z\in [A_{k}, A_{k+1}]\) for some k and let \(\varDelta ' = z - A_{k} \in [0, a_{k+1}]\). By Lemma 2 we have

$$\begin{aligned} \phi (A_{k} + \varDelta ') - \phi (A_{k}) \ge \phi (z+\varDelta ) - \phi (z+\varDelta - \varDelta '). \end{aligned}$$
(12)

Note that \(A_k+\varDelta ' = z\) and \(z+\varDelta - \varDelta ' = A_k+ \varDelta \). Summing equations (11) over all \(j=0, 1,\ldots , k-1\) and (12), yields the desired result.    \(\square \)

B Proof Sketch of Theorem 4

We first give the explicit formula to compute \(\gamma (z, T)\).

Lemma 3

Suppose \(T = \{\ell _1, \ldots , \ell _{|T|}\} \subseteq S\) such that \(\ell _1< \cdots < \ell _{|T|}\). Denote \(A_k = \sum _{j=1}^k a_j\) for \(k\in S\) and \(A_0 = 0\). Denote \(A^T_t = a(T) - \sum _{j=1}^{t} a_{\ell _j}\) for \(t=1,\ldots , |T|\), and \(A^T_0 = a(T)\), \(\ell _0 = 0\). There have three cases to consider: (i) if \(0 \le z \le a(T)\), then \(\gamma (z, T) = g(a(S) - a(T) +z) + \sum _{j\in T} \rho _j(S\setminus j) -f(S). \) (ii) if \(A_{k} + A^T_{t} \le z \le A_{k+1}+A_{t}^T\) for \(k = \ell _{t}, \ldots , \ell _{t+1} -2\) and \(t = 0, 1, \ldots , |T|-1\), then \(\gamma (z, T) = g(a(S) - A_{k+1} - A^T_{t} + z) + \sum _{j \in [k]\cup \{\ell _j\}_{j=t+1}^{|T|} } \rho _j(S\setminus j) - g(a(S)-a_{k+1}). \) (iii) if \(z \ge A_{\ell _{|T|}}\), then \(\gamma (z, T) = \gamma _0(z)\).

To establish the proof of Theorem 4, our basic idea is to exploit (8) in Proposition 3. To show (8), we first establish that inequalities similar in spirit to (8) hold for \(\gamma (z, T)\) in Lemmas 4 and 5. Then we use the fact that \(\gamma {\left( {\begin{array}{c}z\\ \mathbf {u}\end{array}}\right) }\) can be computed through (10) and \(\gamma (z, T)\) to complete the proof of Theorem 4.

Lemma 4

For any \(T\subseteq S\), we have \( \sum _{j\in T} \gamma (z_j, \{j\}) \ge \gamma (z(T), T), \forall z_j \ge 0. \)

Lemma 5

For any \(i\in [r]\), we have \( \gamma _0(z_0) + \gamma {\left( {\begin{array}{c}z_1\\ \mathbf {e}_i\end{array}}\right) } \ge \gamma {\left( {\begin{array}{c}z_0+z_1\\ \mathbf {e}_i\end{array}}\right) }, \forall z_0, z_1\ge 0. \)

Proof (Theorem 4). Let \(\varGamma \subseteq \bar{S}\) and \(|\varGamma _i| \le d_i\), recall equation (10), we have

$$\begin{aligned}&\sum _{j\in \varGamma }\gamma {\left( {\begin{array}{c}z_j\\ \mathbf {e}_{\sigma (j)}\end{array}}\right) } = \sum _{j\in \varGamma } \max _{T^j} \{ \gamma (z_j, T^j): |T^j| = \max \{0, |S_i|+1-d_i\}, T^j \subseteq S_{\sigma (j)} \} \\&= \max _{\{T^j\}_{j\in \varGamma }} \{ \sum _{j\in \varGamma } \gamma (z_j, T^j): |T^j| = \max \{0, |S_{i}|+1-d_{i}\}, T^j \subseteq S_{\sigma (j)} \} \\&\ge \max _{T\subseteq S} \{ \gamma (z(\varGamma ), T): |T_i| = \max \{0, |S_i|+ |\varGamma _i| -d_i\} \} = \gamma {\left( {\begin{array}{c}z(\varGamma )\\ \sum _{j\in \varGamma } \mathbf {e}_{\sigma (j)} \end{array}}\right) }, \end{aligned}$$

where the inequality is based on Lemmas 4 and 5.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, X., Prokopyev, O.A., Zeng, B. (2020). Sequence Independent Lifting for the Set of Submodular Maximization Problem. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics