Machine Learning and Image Processing for Breast Cancer: A Systematic Map | SpringerLink
Skip to main content

Machine Learning and Image Processing for Breast Cancer: A Systematic Map

  • Conference paper
  • First Online:
Trends and Innovations in Information Systems and Technologies (WorldCIST 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1161))

Included in the following conference series:

Abstract

Machine Learning (ML) combined with Image Processing (IP) gives a powerful tool to help physician, doctors and radiologist to make more accurate decisions. Breast cancer (BC) is a largely common disease among women worldwide; it is one of the medical sub-field that are experiencing an emergence of the use of ML and IP techniques. This paper explores the use of ML and IP techniques for BC in the form of a systematic mapping study. 530 papers published between 2000 and August 2019 were selected and analyzed according to 6 criteria: year and publication channel, empirical type, research type, medical task, machine learning objectives and datasets used. The results show that classification was the most used ML objective. As for the datasets most of the articles used private datasets belonging to hospitals, although papers using public data choose MIAS (Mammographic Image Analysis Society) which make it as the most used public dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Metelko, Z., et al.: Pergamon the world health organization quality of life assessment. 41(10) (1995)

    Google Scholar 

  2. Bish, A., Ramirez, A., Burgess, C., Hunter, M.: Understanding why women delay in seeking help for breast cancer symptoms B. J. Psychosom. Res. 58, 321–326 (2005)

    Article  Google Scholar 

  3. Zhang, G., Wang, W., Moon, J., Pack, J.K., Jeon, S.I.: A review of breast tissue classification in mammograms. In: Proceedings of the 2011 ACM Research in Applied Computation Symposium, RACS 2011, pp. 232–237 (2011)

    Google Scholar 

  4. Idri, A., Chlioui, I., El Ouassif, B.: A systematic map of data analytics in breast cancer. In: ACM International Conference. Proceeding Series (2018)

    Google Scholar 

  5. Hosni, M., Abnane, I., Idri, A., Carrillo de Gea, J.M., Fernández Alemán, J.L.: Reviewing ensemble classification methods in breast cancer. Comput. Methods Programs Biomed. 177, 89–112 (2019)

    Article  Google Scholar 

  6. Kofod-petersen, A.: How to do a structured literature review in computer science. Researchgate, no. May 2015, pp. 1–7 (2014)

    Google Scholar 

  7. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic literature reviews in software engineering - a systematic literature review. Inf. Softw. Technol. 51(1), 7–15 (2009)

    Article  Google Scholar 

  8. Tonella, P., Torchiano, M., Du Bois, B., Systä, T.: Empirical studies in reverse engineering: state of the art and future trends. Empir. Softw. Eng. 12(5), 551–571 (2007)

    Article  Google Scholar 

  9. Rampun, A., Wang, H., Scotney, B., Morrow, P., Zwiggelaar, R.: School of Computing, Ulster University, Coleraine, Northern Ireland, UK Department of Computer Science, Aberystwyth University, UK. In: 2018 25th IEEE International Conference Image Processing, pp. 2072–2076 (2018)

    Google Scholar 

  10. Agarap, A.F.M.: On breast cancer detection: an application of machine learning algorithms on the Wisconsin diagnostic dataset. In: ACM International Conference. Proceeding Series, no. 1, pp. 5–9 (2018)

    Google Scholar 

  11. Xiong, X., Kim, Y., Baek, Y., Rhee, D.W., Kim, S.H.: Analysis of breast cancer using data mining & statistical techniques. In: Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-assembling Wireless Network, SNPD/SAWN 2005, vol. 2005, pp. 82–87 (2005)

    Google Scholar 

  12. Sadoughi, F., Kazemy, Z., Hamedan, F., Owji, L., Rahmanikatigari, M., Azadboni, T.T.: Artificial intelligence methods for the diagnosis of breast cancer by image processing: a review. Breast Cancer Targets Ther. 10, 219–230 (2018)

    Article  Google Scholar 

  13. Wei, X., Ma, Y., Wang, R.: A new mammography lesion classification method based on convolutional neural network. In: ACM International Conference. Proceeding Series, pp. 39–43 (2019)

    Google Scholar 

  14. Ting, F.F., Tan, Y.J., Sim, K.S.: Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 120, 103–115 (2019)

    Article  Google Scholar 

  15. Torrents-Barrena, J., Puig, D., Melendez, J., Valls, A.: Computer-aided diagnosis of breast cancer via Gabor wavelet bank and binary-class SVM in mammographic images. J. Exp. Theor. Artif. Intell. 28(1–2), 295–311 (2016)

    Article  Google Scholar 

  16. Hu, Z., Tang, J., Wang, Z., Zhang, K., Zhang, L., Sun, Q.: Deep learning for image-based cancer detection and diagnosis – a survey. Pattern Recogn. 83, 134–149 (2018)

    Article  Google Scholar 

  17. Mini, M.G.: Neural network based classification of digitized mammograms. In: Proceedings of the 2nd Kuwait Conference on e-Services e-Systems, KCESS 2011, pp. 1–5 (2011)

    Google Scholar 

  18. Hamidinekoo, A., Dagdia, Z.C., Suhail, Z., Zwiggelaar, R.: Distributed rough set based feature selection approach to analyse deep and hand-crafted features for mammography mass classification. In: Proceedings of the 2018 IEEE International Conference on Big Data, Big Data 2018, pp. 2423–2432 (2019)

    Google Scholar 

  19. Mendel, K., Li, H., Sheth, D., Giger, M.: Transfer learning from convolutional neural networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis and full-field digital mammography. Acad. Radiol. 26(6), 735–743 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Idri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zerouaoui, H., Idri, A., El Asnaoui, K. (2020). Machine Learning and Image Processing for Breast Cancer: A Systematic Map. In: Rocha, Á., Adeli, H., Reis, L., Costanzo, S., Orovic, I., Moreira, F. (eds) Trends and Innovations in Information Systems and Technologies. WorldCIST 2020. Advances in Intelligent Systems and Computing, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-45697-9_5

Download citation

Publish with us

Policies and ethics