Semantic Representation Based on Deep Learning for Spam Detection | SpringerLink
Skip to main content

Semantic Representation Based on Deep Learning for Spam Detection

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12056))

Included in the following conference series:

  • 772 Accesses

Abstract

This paper addresses the email spam filtering problem by proposing an approach based on two levels text semantic analysis. In the first level, a deep learning technique, based on Word2Vec is used to categorize emails by specific domains (e.g., health, education, finance, etc.). This enables a separate conceptual view for spams in each domain. In the second level, we extract a set of latent topics from email contents and represent them by rules to summarize the email content into compact topics discriminating spam from legitimate emails in an efficient way. The experimental study shows promising results in term of the precision of the spam detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://code.google.com/archive/p/ir-themis/.

  2. 2.

    https://www.cs.cmu.edu/./enron/.

  3. 3.

    http://csmining.org/index.php/lingspam-datasets.html.

References

  1. Bíró, I., Szabó, J., Benczúr, A.A.: Latent dirichlet allocation in web spam filtering. In: Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web, pp. 29–32. ACM (2008)

    Google Scholar 

  2. Caruana, G., Li, M.: A survey of emerging approaches to spam filtering. ACM Comput. Surv. (CSUR) 44(2), 1–27 (2012)

    Article  Google Scholar 

  3. Ezpeleta, E., Zurutuza, U., Gómez Hidalgo, J.M.: Does sentiment analysis help in bayesian spam filtering? In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds.) HAIS 2016. LNCS (LNAI), vol. 9648, pp. 79–90. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32034-2_7

    Chapter  Google Scholar 

  4. Gudkova, D., Vergelis, M., et al.: Spam and phishing in Q2 2016. Kaspersky Lab, pp. 1–22 (2016)

    Google Scholar 

  5. Gudkova, D., Vergelis, M., et al.: Spam and phishing in Q2 2017. Securelsit, Spam and phishing reports (2017). https://securelist.com/spam-and-phishing-in-q2-2017/81537/

  6. Gudkova, D., Vergelis, M., Demidova, N.: Spam and phishing in Q2 2015. Kaspersky Lab, pp. 1–19 (2015)

    Google Scholar 

  7. Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 289–296. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  8. Laorden, C., Santos, I., et al.: Word sense disambiguation for spam filtering. Electron. Commer. Res. Appl. 11(3), 290–298 (2012)

    Article  Google Scholar 

  9. Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. J. Mach. Learn. Res. 5(2), 153–188 (2004)

    MathSciNet  Google Scholar 

  10. Mikolov, T., Sutskever, I., et al.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  11. Polyvyanyy, A., Kuropka, D.: A quantitative evaluation of the enhanced topic-based vector space model (2007)

    Google Scholar 

  12. Kadam, S., Gala, A., Gehlot, P., Kurup, A., Ghag, K.: Word embedding based multinomial naive bayes algorithm for spam filtering. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–5. IEEE (2018)

    Google Scholar 

  13. Renuka, K.D., Visalakshi, P.: Latent semantic indexing based SVM model for email spam classification, vol. 73, no. 6, pp. 437–442 (2014)

    Google Scholar 

  14. Saidani, N., Adi, K., Allili, M.S.: A supervised approach for spam detection using text-based semantic representation. In: Aïmeur, E., Ruhi, U., Weiss, M. (eds.) MCETECH 2017. LNBIP, vol. 289, pp. 136–148. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59041-7_8

    Chapter  Google Scholar 

  15. Santos, I., Laorden, C., Sanz, B., Bringas, P.G.: Enhanced topic-based vector space model for semantics aware spam filtering. Exp. Syst. Appl. 39(1), 437–444 (2012)

    Article  Google Scholar 

  16. Symantec. Internet Security Threat Report, vol. 21, pp. 1–77 (2016)

    Google Scholar 

  17. Tang, G., Pei, J., Luk, W.-S.: Email mining: tasks, common techniques, and tools. Knowl. Inf. Syst. 41(1), 1–31 (2013). https://doi.org/10.1007/s10115-013-0658-2

    Article  Google Scholar 

  18. Wang, P., Xu, J.: Semantic clustering and convolutional neural network for short text categorization. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 2, pp. 352–357 (2015)

    Google Scholar 

  19. Wu, T., Liu, S., Zhang, J., Xiang, Y.: Twitter spam detection based on deep learning. In: Proceedings of the Australasian Computer Science Week Multiconference, pp. 1–8. ACM (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjate Saidani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saidani, N., Adi, K., Allili, M.S. (2020). Semantic Representation Based on Deep Learning for Spam Detection. In: Benzekri, A., Barbeau, M., Gong, G., Laborde, R., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2019. Lecture Notes in Computer Science(), vol 12056. Springer, Cham. https://doi.org/10.1007/978-3-030-45371-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45371-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45370-1

  • Online ISBN: 978-3-030-45371-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics