PAC: Privacy-Preserving Arrhythmia Classification with Neural Networks | SpringerLink
Skip to main content

PAC: Privacy-Preserving Arrhythmia Classification with Neural Networks

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12056))

Included in the following conference series:

  • 823 Accesses

Abstract

In this paper, we propose to study privacy concerns raised by the analysis of Electro CardioGram (ECG) data for arrhythmia classification. We propose a solution named PAC that combines the use of Neural Networks (NN) with secure two-party computation in order to enable an efficient NN prediction of arrhythmia without discovering the actual ECG data. To achieve a good trade-off between privacy, accuracy, and efficiency, we first build a dedicated NN model which consists of two fully connected layers and one activation layer as a square function. The solution is implemented with the ABY framework. PAC also supports classifications in batches. Experimental results show an accuracy of 96.34% which outperforms existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.apple.com/lae/apple-watch-series-4/health/.

  2. 2.

    https://www.ibm.com/security/data-breach.

  3. 3.

    https://eur-lex.europa.eu/eli/reg/2016/679/oj.

  4. 4.

    https://www.physionet.org/physiobank/database/mitdb/.

  5. 5.

    Lectures 1&2: Introduction to Secure Computation, Yao’s and GMW Protocols, Secure Computation Course at Berkeley University.

  6. 6.

    https://github.com/encryptogroup/ABY.

  7. 7.

    https://www.tensorflow.org/.

References

  1. Ball, M., Carmer, B., Malkin, T., Rosulek, M., Schimanski, N.: Garbled neural networks are practical. Cryptology ePrint Archive, Report 2019/338 (2019). https://eprint.iacr.org/2019/338

  2. Barni, M., Failla, P., Lazzeretti, R., Sadeghi, A.R., Schneider, T.: Privacy-preserving ECG classification with branching programs and neural networks. IEEE (TIFS) (2011)

    Google Scholar 

  3. Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-based computation. In: MM&Sec. ACM (2006)

    Google Scholar 

  4. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17

    Chapter  Google Scholar 

  5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS (2012)

    Google Scholar 

  6. Castells, F., Laguna, P., Sörnmo, L., Bollmann, A., Roig, J.M.: Principal component analysis in ECG signal processing. EURASIP J. Adv. Signal Process. 2007(1), 1–21 (2007). https://doi.org/10.1155/2007/74580

    Article  MATH  Google Scholar 

  7. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural networks (2017)

    Google Scholar 

  8. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: programmable, efficient, and scalable secure two-party computation for machine learning. In: IEEE EuroS&P (2019)

    Google Scholar 

  9. Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., Fei-Fei, L.: Faster CryptoNets: leveraging sparsity for real-world encrypted inference (2018). http://arxiv.org/abs/1811.09953

  10. Dahl, M., et al.: Private machine learning in tensorflow using secure computation (2018). http://arxiv.org/abs/1810.08130

  11. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: NDSS (2015)

    Google Scholar 

  12. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: ICML (2016)

    Google Scholar 

  13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM STOC (2009)

    Google Scholar 

  14. Gentry, C.: A fully homomorphic encryption scheme (2009)

    Google Scholar 

  15. Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over encrypted data (2017). http://arxiv.org/abs/1711.05189

  16. Hesamifard, E., Takabi, H., Ghasemi, M., Wright, R.N.: Privacy-preserving machine learning as a service. In: PoPETs (2018)

    Google Scholar 

  17. Hunt, T., Song, C., Shokri, R., Shmatikov, V., Witchel, E.: Chiron: privacy-preserving machine learning as a service (2018). http://arxiv.org/abs/1803.05961

  18. Ibarrondo, A., Önen, M.: FHE-compatible batch normalization for privacy preserving deep learning. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Livraga, G., Rios, R. (eds.) DPM/CBT -2018. LNCS, vol. 11025, pp. 389–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00305-0_27

    Chapter  Google Scholar 

  19. Jiang, X., Kim, M., Lauter, K.E., Song, Y.: Secure outsourced matrix computation and application to neural networks. In: ACM CCS (2018)

    Google Scholar 

  20. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002). https://doi.org/10.1007/b98835

    Book  MATH  Google Scholar 

  21. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: USENIX Security (2018)

    Google Scholar 

  22. Kass, R.E., Clancy, C.E.: Basis and Treatment of Cardiac Arrhythmias. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29715-4

    Book  Google Scholar 

  23. Lindell, Y.: Secure multiparty computation for privacy-preserving data mining (2008)

    Google Scholar 

  24. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: ACM CCS (2017)

    Google Scholar 

  25. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX Security (2004)

    Google Scholar 

  26. Mansouri, M., Bozdemir, B., Önen, M., Ermis, O.: PAC: privacy-preserving arrhythmia classification with neural networks (2018). http://www.eurecom.fr/fr/publication/5998/download/sec-publi-5998.pdf

  27. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: IEEE S&P (2017)

    Google Scholar 

  28. Mohassel, P., Rindal, P.: Aby\(^{3}\): a mixed protocol framework for machine learning. In: ACM CCS (2018)

    Google Scholar 

  29. Ohrimenko, O., Schuster, F., Fournet, C., Mehta, A., Nowozin, S., Vaswani, K., Costa, M.: Oblivious multi-party machine learning on trusted processors. In: USENIX Security (2016)

    Google Scholar 

  30. Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homomorphic encryption. EURASIP 2007, 037343 (2007)

    Google Scholar 

  31. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  32. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: a hybrid secure computation framework for machine learning applications. In: AsiaCCS (2018)

    Google Scholar 

  33. Rouhani, B.D., Riazi, M.S., Koushanfar, F.: DeepSecure: scalable provably-secure deep learning. In: DAC (2018)

    Google Scholar 

  34. Sanyal, A., Kusner, M.J., Gascón, A., Kanade, V.: TAPAS: tricks to accelerate (encrypted) prediction as a service (2018). http://arxiv.org/abs/1806.03461

  35. Tramèr, F., Boneh, D.: Slalom: fast, verifiable and private execution of neural networks in trusted hardware. In: ICLR (2019)

    Google Scholar 

  36. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network training. In: PETS (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the PAPAYA project funded by the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 786767.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beyza Bozdemir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mansouri, M., Bozdemir, B., Önen, M., Ermis, O. (2020). PAC: Privacy-Preserving Arrhythmia Classification with Neural Networks. In: Benzekri, A., Barbeau, M., Gong, G., Laborde, R., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2019. Lecture Notes in Computer Science(), vol 12056. Springer, Cham. https://doi.org/10.1007/978-3-030-45371-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45371-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45370-1

  • Online ISBN: 978-3-030-45371-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics