Improving Performance Estimation for FPGA-Based Accelerators for Convolutional Neural Networks | SpringerLink
Skip to main content

Improving Performance Estimation for FPGA-Based Accelerators for Convolutional Neural Networks

  • Conference paper
  • First Online:
Applied Reconfigurable Computing. Architectures, Tools, and Applications (ARC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12083))

Included in the following conference series:

Abstract

Field-programmable gate array (FPGA) based accelerators are being widely used for acceleration of convolutional neural networks (CNNs) due to their potential in improving the performance and reconfigurability for specific application instances. To determine the optimal configuration of an FPGA-based accelerator, it is necessary to explore the design space and an accurate performance prediction plays an important role during the exploration. This work introduces a novel method for fast and accurate estimation of latency based on a Gaussian process parametrised by an analytic approximation and coupled with runtime data. The experiments conducted on three different CNNs on an FPGA-based accelerator on Intel Arria 10 GX 1150 demonstrated a 30.7% improvement in accuracy with respect to the mean absolute error in comparison to a standard analytic method in leave-one-out cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A tutorial code is available at https://git.io/Jv31c.

  2. 2.

    For a detailed derivation please refer to [15].

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Dai, S., Zhou, Y., Zhang, H., Ustun, E., Young, E.F., Zhang, Z.: Fast and accurate estimation of quality of results in high-level synthesis with machine learning. In: Proceedings of the 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 129–132. IEEE, Boulder (2018)

    Google Scholar 

  3. Enzler, R., Jeger, T., Cottet, D., Tröster, G.: High-level area and performance estimation of hardware building blocks on FPGAs. In: Hartenstein, R.W., Grünbacher, H. (eds.) FPL 2000. LNCS, vol. 1896, pp. 525–534. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44614-1_57

    Chapter  Google Scholar 

  4. Fan, H., et al.: A real-time object detection accelerator with compressed SSDLite on FPGA. In: Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT), pp. 14–21. IEEE, Sakura (2018)

    Google Scholar 

  5. Fan, H., et al.: F-E3D: FPGA-based acceleration of an efficient 3D convolutional neural network for human action recognition. In: Proceedings of the 2019 IEEE 30th International Conference on Application-Specific Systems, Architectures and Processors (ASAP), vol. 2160, pp. 1–8. IEEE, New York (2019)

    Google Scholar 

  6. Fortuin, V., Rätsch, G.: Deep mean functions for meta-learning in Gaussian processes. arXiv preprint arXiv:1901.08098 (2019)

  7. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2016, pp. 770–778. IEEE, Las Vegas (2016)

    Google Scholar 

  9. Holland, B., George, A.D., Lam, H., Smith, M.C.: An analytical model for multilevel performance prediction of multi-FPGA systems. ACM Trans. Reconfig. Technol. Syst. (TRETS) 4(3), 27 (2011)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Lian, X., Liu, Z., Song, Z., Dai, J., Zhou, W., Ji, X.: High-performance FPGA-based CNN accelerator with block-floating-point arithmetic. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27, 1874–1885 (2019)

    Article  Google Scholar 

  12. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  13. Matthews, D.G., et al.: GPflow: a Gaussian process library using TensorFlow. J. Mach. Learn. Res. 18, 1299–1304 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Rasmussen, C.E.: Gaussian Processes in Machine Learning. The MIT Press, Cambridge (2005)

    Book  Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3, pp. 779–788. IEEE, Las Vegas (2016)

    Google Scholar 

  17. Venieris, S., Kouris, A., Bouganis, C.S.: Toolflows for mapping convolutional neural networks on FPGAs: a survey and future directions. ACM Comput. Surv. (CSUR) 51, 1–39 (2018)

    Article  Google Scholar 

  18. Williams, C.K., Rasmussen, C.E.: Gaussian processes for regression. In: Advances in Neural Information Processing Systems, pp. 514–520 (1996)

    Google Scholar 

  19. Yasudo, R., Coutinho, J., Varbanescu, A., Luk, W., Amano, H., Becker, T.: Performance estimation for exascale reconfigurable dataflow platforms. In: Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT), pp. 314–317. IEEE, Sakura (2018)

    Google Scholar 

Download references

Acknowledgments

We thank Yann Herklotz, Alexander Montgomerie-Corcoran and ARC’20 reviewers for insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ferianc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferianc, M., Fan, H., Chu, R.S.W., Stano, J., Luk, W. (2020). Improving Performance Estimation for FPGA-Based Accelerators for Convolutional Neural Networks. In: Rincón, F., Barba, J., So, H., Diniz, P., Caba, J. (eds) Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science(), vol 12083. Springer, Cham. https://doi.org/10.1007/978-3-030-44534-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44534-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44533-1

  • Online ISBN: 978-3-030-44534-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics