A Methodology for Implementing the Formal Legal-GRL Framework: A Research Preview | SpringerLink
Skip to main content

A Methodology for Implementing the Formal Legal-GRL Framework: A Research Preview

  • Conference paper
  • First Online:
Requirements Engineering: Foundation for Software Quality (REFSQ 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12045))

Abstract

[Context and motivation] Legal provisions create a distinct set of requirements for businesses to be compliant with. Capturing legal requirements and managing regulatory compliance is a challenging task in system development. [Question/problem] Part of this task involves modeling legal requirements, which is not trivial for requirements engineers as non-experts in law. The resultant legal requirements models also tend to be very complex and hard to understand. [Principal ideas/results] To facilitate the modeling process, we propose a formal framework for modeling legal requirements. This framework includes a methodology that helps to resolve complexities of legal requirements models. [Contribution] In this paper, we outline this methodology and present a procedure that reduces modal and conditional complexities of legal models and facilitates automation of the modeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Part of the corpus is accessible at: https://bit.ly/35znB0t.

References

  1. The general data protection regulation (GDPR) (2018). https://gdpr-info.eu/

  2. Akhigbe, O., Amyot, D., Richards, G.: A systematic literature mapping of goal and non-goal modelling methods for legal and regulatory compliance. Requirements Eng. 24(4), 459–481 (2018). https://doi.org/10.1007/s00766-018-0294-1

    Article  Google Scholar 

  3. Alchourrón, C.E.: Logic of norms and logic of normative propositions. Logique et analyse 12(47), 242–268 (1969)

    MathSciNet  MATH  Google Scholar 

  4. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Evaluating goal models within the goal-oriented requirement language. Int. J. Intell. Syst. 25(8), 841–877 (2010)

    Article  Google Scholar 

  5. Amyot, D., Mussbacher, G., Ghanavati, S., Kealey, J.: GRL modeling and analysis with jUCMNav. iStar 766, 160–162 (2011)

    Google Scholar 

  6. Breaux, T.D., Antón, A.I.: A systematic method for acquiring regulatory requirements: A frame-based approach. RHAS-6), Delhi, India (2007)

    Google Scholar 

  7. Ghanavati, S.: Legal-URN framework for legal compliance of business processes. Ph.D. thesis, Université d’Ottawa/University of Ottawa (2013)

    Google Scholar 

  8. Ghanavati, S., Amyot, D., Rifaut, A.: Legal goal-oriented requirement language (legal GRL) for modeling regulations. In: Proceedings of the 6th International Workshop on Modeling in Software Engineering, pp. 1–6. ACM (2014)

    Google Scholar 

  9. Governatori, G., Rotolo, A.: A conceptually rich model of business process compliance. In: Proceedings of the Seventh Asia-Pacific Conference on Conceptual Modelling, vol. 110, pp. 3–12. Australian Computer Society, Inc. (2010)

    Google Scholar 

  10. Hashmi, M., Governatori, G., Lam, H.-P., Wynn, M.T.: Are we done with business process compliance: state of the art and challenges ahead. Knowl. Inf. Syst. 57(1), 79–133 (2018). https://doi.org/10.1007/s10115-017-1142-1

    Article  Google Scholar 

  11. Ingolfo, S., Jureta, I., Siena, A., Perini, A., Susi, A.: Nòmos 3: legal compliance of roles and requirements. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 275–288. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_22

    Chapter  Google Scholar 

  12. Rabinia, A., Ghanavati, S.: FOL-based approach for improving legal-GRL modeling framework: a case for requirements engineering of legal regulations of social media. In: IEEE 25th International RE Conference Workshops (REW), pp. 213–218 (2017)

    Google Scholar 

  13. Rabinia, A., Ghanavati, S.: The FOL-based legal-GRL (FLG) framework: towards an automated goal modeling approach for regulations. In: 2018 IEEE 8th International Model-Driven Requirements Engineering Workshop (MoDRE), pp. 58–67 (2018)

    Google Scholar 

  14. Sartor, G.: Fundamental legal concepts: a formal and teleological characterisation. Artif. Intell. Law 14(1–2), 101–142 (2006)

    Google Scholar 

  15. Torre, D., Soltana, G., Sabetzadeh, M., Briand, L., Auffinger, Y., Goes, P.: Using models to enable compliance checking against the GDPR: an experience report. In: Proceeding of the IEEE/ACM 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS 19) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Rabinia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rabinia, A., Ghanavati, S., Humphreys, L., Hahmann, T. (2020). A Methodology for Implementing the Formal Legal-GRL Framework: A Research Preview. In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi, S. (eds) Requirements Engineering: Foundation for Software Quality. REFSQ 2020. Lecture Notes in Computer Science(), vol 12045. Springer, Cham. https://doi.org/10.1007/978-3-030-44429-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44429-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44428-0

  • Online ISBN: 978-3-030-44429-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics