Short Term Electricity Load Forecasting Through Machine Learning | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1153))

Abstract

Essentially, Electricity Load Forecasting is an approximation of upcoming active loads from a variety of load buses before the active loads occur. Also, it is an important factor for power system energy management. Accurate and precise load forecasting can help to reduce the capacity of the power system, to make unit commitment decisions, and to increase the dependability of power systems. Hence, this paper presents a generalized regression Neural Network (GRNN) based approach for Short Term Load Forecasting (STLF). The results showed that the performance of GRNN with 30 neurons is better of short-term load forecasting in comparison with 10 neurons. For 10 neurons, the Mean Absolute Percentage Error (MAPE) was 2.10% and Mean Absolute Error (MAE) was 306.21 MWh. However, for 30 neurons it was observed that MAPE is 1.81% and MAE 268.48 MWh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sayed, G.I., Hassanien, A.E., Azar, A.T.: Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 31(1), 171–188 (2019)

    Article  Google Scholar 

  2. Azar, A.T., El-Metwally, S.M.: Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 23(7–8), 2387–2403 (2013)

    Article  Google Scholar 

  3. Inbarani, H.H., Banu, P.K.N., Azar, A.T.: Feature selection using swarm-based relative reduct technique for fetal heart rate. Neural Comput. Appl. 25(3–4), 793–806 (2014)

    Article  Google Scholar 

  4. Kumar, S.S., Inbarani, H.H., Azar, A.T., Polat, K.: Covering-based rough set classification system. Neural Comput. Appl. 28(10), 2879–2888 (2017)

    Article  Google Scholar 

  5. Jothi, G., Inbarani, H.H., Azar, A.T., Polat, K.: Tolerance rough set firefly-based quick reduct. Neural Comput. Appl. 28(10), 2995–3008 (2017)

    Article  Google Scholar 

  6. Azar, A.T., Inbarani, H.H., Devi, K.R.: Improved dominance rough set-based classification system. Neural Comput. Appl. 28(8), 2231–2246 (2017)

    Article  Google Scholar 

  7. Inbarani, H.H., Kumar, S.U., Azar, A.T., Hassanien, A.E.: Hybrid rough-bijective soft set classification system. Neural Comput. Appl. 29(8), 67–78 (2018)

    Article  Google Scholar 

  8. Jothi, G., Inbarani, H.H., Azar, A.T., Devi, K.R.: Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Comput. Appl. 31(9), 5175–5194 (2019)

    Article  Google Scholar 

  9. Banu, P.K.N., Azar, A.T., Inbarani, H.H.: Fuzzy firefly clustering for tumor and cancer analysis. Int. J. Model. Ident. Control (IJMIC) 27(2), 92–103 (2017)

    Article  Google Scholar 

  10. Inbarani, H.H., Azar, A.T., Jothi, G.: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput. Methods Programs Biomed. 113(1), 175–185 (2014)

    Article  Google Scholar 

  11. Jothi, G., Inbarani, H.H., Azar, A.T.: Hybrid tolerance-PSO based supervised feature selection for digital mammogram images. Int. J. Fuzzy Syst. Appl. (IJFSA) 3(4), 15–30 (2013)

    Article  Google Scholar 

  12. Moftah, H.M., Azar, A.T., Al-Shammari, E.T., Ghali, N.I., Hassanien, A.E., Shoman, M.: Adaptive K-means clustering algorithm for MR breast image segmentation. Neural Comput. Appl. 24(7–8), 1917–1928 (2014)

    Article  Google Scholar 

  13. Azar, A.T., Elshazly, H.I., Hassanien, A.E., Elkorany, A.M.: A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 113(2), 465–473 (2014)

    Article  Google Scholar 

  14. Hassanien, A.E., Moftah, H.M., Azar, A.T., Shoman, M.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. 14(Part A), 62–71 (2014)

    Google Scholar 

  15. Jacob, M., Neves, C., Vukadinovic Greetham, D.: Short term load forecasting. In: Forecasting and Assessing Risk of Individual Electricity Peaks. Mathematics of Planet Earth, pp. 15–37. Springer, Cham (2020)

    Google Scholar 

  16. Walther, J., Spanier, D., Panten, N., Abele, E.: Very short-term load forecasting on factory level – a machine learning approach. Proc. CIRP 80, 705–710 (2019)

    Article  Google Scholar 

  17. Fan, G.F., Peng, L.L., Hong, W.C.: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Appl. Energy 224, 13–33 (2018)

    Article  Google Scholar 

  18. Zhao, J., Liu, X.: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis. Energy Build. 174, 293–308 (2018)

    Article  Google Scholar 

  19. Raza, M.Q., Khosravi, A.: A review on artificial intelligence-based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 50, 1352–1372 (2015)

    Article  Google Scholar 

  20. Hsu, Y.Y., Tung, T.T., Yeh, H.C., Lu, C.N.: Two-stage artificial neural network model for short-term load forecasting. IFAC-PapersOnLine 51(28), 678–683 (2018)

    Article  Google Scholar 

  21. Singh, P., Dwivedi, P., Kant, V.: A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting. Energy 174, 460–477 (2019)

    Article  Google Scholar 

  22. Sideratos, G., Ikonomopoulos, A., Hatziargyriou, N.D.: A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electr. Power Syst. Res. 178, 106025 (2020). https://doi.org/10.1016/j.epsr.2019.106025

    Article  Google Scholar 

  23. Ali, D., Yohanna, M., Ijasini, P.M., Garkida, M.B.: Application of fuzzy – neuro to model weather parameter variability impacts on electrical load based on long-term forecasting. Alexandria Eng. J. 57(1), 223–233 (2018)

    Article  Google Scholar 

  24. Yang, A., Li, W., Yang, X.: Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines. Knowl.-Based Syst. 163, 159–173 (2019)

    Article  Google Scholar 

  25. López, C., Zhong, W., Zheng, M.: Short-term electric load forecasting based on wavelet neural network, particle swarm optimization and ensemble empirical mode decomposition. Energy Proc. 105, 3677–3682 (2017)

    Article  Google Scholar 

  26. Sadaei, H.J., Enayatifar, R., Abdullah, A.H., Gani, A.: Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int. J. Electr. Power Energy Syst. 62, 118–129 (2014)

    Article  Google Scholar 

  27. Lindberg, K.B., Seljom, P., Madsen, H., Fischer, D., Korpås, M.: Long-term electricity load forecasting: current and future trends. Utilities Policy 58, 102–119 (2019)

    Article  Google Scholar 

  28. Hagan, M.T., Behr, S.M.: The time series approach to short term load forecasting. IEEE Trans. Power Syst. 2(3), 785–791 (1987)

    Article  Google Scholar 

  29. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Greta, M., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, San Francisco (2015)

    Google Scholar 

  30. Al-Hamadi, H.M., Soliman, S.A.: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Power Syst. Res. 68(1), 47–59 (2004)

    Article  Google Scholar 

  31. Christiaanse, W.: Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Apparatus Syst. 90(2), 900–910 (1971)

    Article  Google Scholar 

  32. Chiu, C.C., Cook, D.F., Kao, J.L., Chou, Y.C.: Combining a neural network and a rule-based expert system for short-term load forecasting. Comput. Ind. Eng. 32(4), 787–797 (1997)

    Article  Google Scholar 

  33. Ranaweera, D.K., Hubele, N.F., Karady, G.G.: Fuzzy logic for short term load forecasting. Int. J. Electr. Power Energy Syst. 18(4), 215–222 (1996)

    Article  Google Scholar 

  34. Pricing Reports - ISO New England. http://iso-ne.com/markets/hstdata. Accessed 22 Nov 2019

  35. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (2002)

    Article  Google Scholar 

  36. Al-Mahasneh, A.J., Anavatti, S.G., Garratt, M.A.: Altitude identification and intelligent control of a flapping wing micro aerial vehicle using modified generalized regression neural networks. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2302–2307. IEEE (2017)

    Google Scholar 

  37. Al-Mahasneh, A.J., Anavatti, S.G., Garratt, S., Pratama, M.: Applications of General Regression Neural Networks in Dynamic Systems, Digital Systems, Vahid Asadpour, IntechOpen (2018). https://doi.org/10.5772/intechopen.80258

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azar, A.T., Khamis, A., Kamal, N.A., Galli, B. (2020). Short Term Electricity Load Forecasting Through Machine Learning. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_40

Download citation

Publish with us

Policies and ethics