Abstract
Essentially, Electricity Load Forecasting is an approximation of upcoming active loads from a variety of load buses before the active loads occur. Also, it is an important factor for power system energy management. Accurate and precise load forecasting can help to reduce the capacity of the power system, to make unit commitment decisions, and to increase the dependability of power systems. Hence, this paper presents a generalized regression Neural Network (GRNN) based approach for Short Term Load Forecasting (STLF). The results showed that the performance of GRNN with 30 neurons is better of short-term load forecasting in comparison with 10 neurons. For 10 neurons, the Mean Absolute Percentage Error (MAPE) was 2.10% and Mean Absolute Error (MAE) was 306.21 MWh. However, for 30 neurons it was observed that MAPE is 1.81% and MAE 268.48 MWh.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sayed, G.I., Hassanien, A.E., Azar, A.T.: Feature selection via a novel chaotic crow search algorithm. Neural Comput. Appl. 31(1), 171–188 (2019)
Azar, A.T., El-Metwally, S.M.: Decision tree classifiers for automated medical diagnosis. Neural Comput. Appl. 23(7–8), 2387–2403 (2013)
Inbarani, H.H., Banu, P.K.N., Azar, A.T.: Feature selection using swarm-based relative reduct technique for fetal heart rate. Neural Comput. Appl. 25(3–4), 793–806 (2014)
Kumar, S.S., Inbarani, H.H., Azar, A.T., Polat, K.: Covering-based rough set classification system. Neural Comput. Appl. 28(10), 2879–2888 (2017)
Jothi, G., Inbarani, H.H., Azar, A.T., Polat, K.: Tolerance rough set firefly-based quick reduct. Neural Comput. Appl. 28(10), 2995–3008 (2017)
Azar, A.T., Inbarani, H.H., Devi, K.R.: Improved dominance rough set-based classification system. Neural Comput. Appl. 28(8), 2231–2246 (2017)
Inbarani, H.H., Kumar, S.U., Azar, A.T., Hassanien, A.E.: Hybrid rough-bijective soft set classification system. Neural Comput. Appl. 29(8), 67–78 (2018)
Jothi, G., Inbarani, H.H., Azar, A.T., Devi, K.R.: Rough set theory with Jaya optimization for acute lymphoblastic leukemia classification. Neural Comput. Appl. 31(9), 5175–5194 (2019)
Banu, P.K.N., Azar, A.T., Inbarani, H.H.: Fuzzy firefly clustering for tumor and cancer analysis. Int. J. Model. Ident. Control (IJMIC) 27(2), 92–103 (2017)
Inbarani, H.H., Azar, A.T., Jothi, G.: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput. Methods Programs Biomed. 113(1), 175–185 (2014)
Jothi, G., Inbarani, H.H., Azar, A.T.: Hybrid tolerance-PSO based supervised feature selection for digital mammogram images. Int. J. Fuzzy Syst. Appl. (IJFSA) 3(4), 15–30 (2013)
Moftah, H.M., Azar, A.T., Al-Shammari, E.T., Ghali, N.I., Hassanien, A.E., Shoman, M.: Adaptive K-means clustering algorithm for MR breast image segmentation. Neural Comput. Appl. 24(7–8), 1917–1928 (2014)
Azar, A.T., Elshazly, H.I., Hassanien, A.E., Elkorany, A.M.: A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 113(2), 465–473 (2014)
Hassanien, A.E., Moftah, H.M., Azar, A.T., Shoman, M.: MRI breast cancer diagnosis hybrid approach using adaptive ant-based segmentation and multilayer perceptron neural networks classifier. Appl. Soft Comput. 14(Part A), 62–71 (2014)
Jacob, M., Neves, C., Vukadinovic Greetham, D.: Short term load forecasting. In: Forecasting and Assessing Risk of Individual Electricity Peaks. Mathematics of Planet Earth, pp. 15–37. Springer, Cham (2020)
Walther, J., Spanier, D., Panten, N., Abele, E.: Very short-term load forecasting on factory level – a machine learning approach. Proc. CIRP 80, 705–710 (2019)
Fan, G.F., Peng, L.L., Hong, W.C.: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Appl. Energy 224, 13–33 (2018)
Zhao, J., Liu, X.: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis. Energy Build. 174, 293–308 (2018)
Raza, M.Q., Khosravi, A.: A review on artificial intelligence-based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 50, 1352–1372 (2015)
Hsu, Y.Y., Tung, T.T., Yeh, H.C., Lu, C.N.: Two-stage artificial neural network model for short-term load forecasting. IFAC-PapersOnLine 51(28), 678–683 (2018)
Singh, P., Dwivedi, P., Kant, V.: A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting. Energy 174, 460–477 (2019)
Sideratos, G., Ikonomopoulos, A., Hatziargyriou, N.D.: A novel fuzzy-based ensemble model for load forecasting using hybrid deep neural networks. Electr. Power Syst. Res. 178, 106025 (2020). https://doi.org/10.1016/j.epsr.2019.106025
Ali, D., Yohanna, M., Ijasini, P.M., Garkida, M.B.: Application of fuzzy – neuro to model weather parameter variability impacts on electrical load based on long-term forecasting. Alexandria Eng. J. 57(1), 223–233 (2018)
Yang, A., Li, W., Yang, X.: Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines. Knowl.-Based Syst. 163, 159–173 (2019)
López, C., Zhong, W., Zheng, M.: Short-term electric load forecasting based on wavelet neural network, particle swarm optimization and ensemble empirical mode decomposition. Energy Proc. 105, 3677–3682 (2017)
Sadaei, H.J., Enayatifar, R., Abdullah, A.H., Gani, A.: Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int. J. Electr. Power Energy Syst. 62, 118–129 (2014)
Lindberg, K.B., Seljom, P., Madsen, H., Fischer, D., Korpås, M.: Long-term electricity load forecasting: current and future trends. Utilities Policy 58, 102–119 (2019)
Hagan, M.T., Behr, S.M.: The time series approach to short term load forecasting. IEEE Trans. Power Syst. 2(3), 785–791 (1987)
Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Greta, M., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, San Francisco (2015)
Al-Hamadi, H.M., Soliman, S.A.: Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model. Electr. Power Syst. Res. 68(1), 47–59 (2004)
Christiaanse, W.: Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Apparatus Syst. 90(2), 900–910 (1971)
Chiu, C.C., Cook, D.F., Kao, J.L., Chou, Y.C.: Combining a neural network and a rule-based expert system for short-term load forecasting. Comput. Ind. Eng. 32(4), 787–797 (1997)
Ranaweera, D.K., Hubele, N.F., Karady, G.G.: Fuzzy logic for short term load forecasting. Int. J. Electr. Power Energy Syst. 18(4), 215–222 (1996)
Pricing Reports - ISO New England. http://iso-ne.com/markets/hstdata. Accessed 22 Nov 2019
Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (2002)
Al-Mahasneh, A.J., Anavatti, S.G., Garratt, M.A.: Altitude identification and intelligent control of a flapping wing micro aerial vehicle using modified generalized regression neural networks. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2302–2307. IEEE (2017)
Al-Mahasneh, A.J., Anavatti, S.G., Garratt, S., Pratama, M.: Applications of General Regression Neural Networks in Dynamic Systems, Digital Systems, Vahid Asadpour, IntechOpen (2018). https://doi.org/10.5772/intechopen.80258
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Azar, A.T., Khamis, A., Kamal, N.A., Galli, B. (2020). Short Term Electricity Load Forecasting Through Machine Learning. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-44289-7_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44288-0
Online ISBN: 978-3-030-44289-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)