Enabling Multi-domain and End-to-End Slice Orchestration for Virtualization Everything Functions (VxFs) | SpringerLink
Skip to main content

Enabling Multi-domain and End-to-End Slice Orchestration for Virtualization Everything Functions (VxFs)

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2020)

Abstract

The traditional business models exploited in networking are changing into industry verticals, which in turn builds new applications with striking and specific requirements. Therefore, the service-oriented, fully programmable, and flexible features that translate to sliced-capable networks are fundamentals in the design, deployment, and orchestration of networks such as 5G and beyond. Also, application consumption experiences are moving towards pervasiveness, and it is necessary to address the established inter-domain constraints uniformly. Leveraged by SDN, Cloud/Edge Computing, and NFV, several state-of-the-art proposals aim to address multi-domain slice deployment. However, they focus on multi-domain control plane efforts, leaving numerous data plane challenges openly. This paper seeks to overcome the multi-domain slice establishing issues through a source routing and BGP-based approach to provide slice abstraction to cope with application requirements. A proof-of-concept called NASOR was implemented and validated using VxFs use-cases. The results showcase its deployment suitability in traditional core networks and enhancement of the end-user experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Artifacts available at https://github.com/romoreira/EdgeComputingSlice.

References

  1. Cisco: Cisco Visual Networking Index: Forecast and Trends, 2017–2022 (2019). https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. Accessed 26 Nov 2019

  2. Ericsson: Ericsson Mobility Report (2019). https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf. Accessed 26 Nov 2019

  3. Moreira, R., de Oliveira Silva, F., Rosa, P.F., Aguiar, R.: A flexible network and compute-aware orchestrator to enhance QoS in NFV-based multimedia services. In: 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), pp. 512–519, May 2018

    Google Scholar 

  4. Nunes, B.A.A., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 16(3), 1617–1634 (2014)

    Article  Google Scholar 

  5. ETSI, N.F.V.: Architectural framework. ETSI GS NFV 2, v1 (2013)

    Google Scholar 

  6. Satyanarayanan, M.: The emergence of edge computing. Computer 50, 30–39 (2017)

    Article  Google Scholar 

  7. Abdullah, Z.N., Ahmad, I., Hussain, I.: Segment routing in software defined networks: a survey. IEEE Commun. Surv. Tutor. 21, 464–486 (2019). Firstquarter

    Article  Google Scholar 

  8. Filsfils, C., Nainar, N.K., Pignataro, C., Cardona, J.C., Francois, P.: The segment routing architecture. In: 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, December 2015

    Google Scholar 

  9. Davoli, L., Veltri, L., Ventre, P.L., Siracusano, G., Salsano, S.: Traffic engineering with segment routing: SDN-based architectural design and open source implementation. In: 2015 Fourth European Workshop on Software Defined Networks, pp. 111–112, September 2015

    Google Scholar 

  10. Previdi, S., Horneffer, M., Litkowski, S., Filsfils, C., Decraene, B., Shakir, R.: Source packet routing in networking (SPRING) problem statement and requirements (2016)

    Google Scholar 

  11. IETF: Packet Network Slicing using Segment Routing (2019). https://tools.ietf.org/html/draft-peng-lsr-network-slicing-00. Accessed 26 Nov 2019

  12. European Telecommunications Standards Institute (ETSI): Next Generation Protocols(NGP); E2E Network Slicing Reference Framework and Information Model (2019). https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_NGP011v010101p.pdf. Accessed 26 Nov 2019

  13. Next Generation Mobile Networks (NGMN): Description of Network Slicing Concept (2019). https://www.ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf. Accessed 26 Nov 2019

  14. Ksentini, A., Nikaein, N.: Toward enforcing network slicing on RAN: flexibility and resources abstraction. IEEE Commun. Mag. 55, 102–108 (2017)

    Article  Google Scholar 

  15. Fernandez, J.-M., Vidal, I., Valera, F.: Enabling the orchestration of IoT slices through edge and cloud microservice platforms. Sensors 19(13), 2980 (2019)

    Article  Google Scholar 

  16. Lee, Y.L., Loo, J., Chuah, T.C., Wang, L.: Dynamic network slicing for multitenant heterogeneous cloud radio access networks. IEEE Trans. Wirel. Commun. 17, 2146–2161 (2018)

    Article  Google Scholar 

  17. Meneses, F., Fernandes, M., Corujo, D., Aguiar, R.: SliMANO: an expandable framework for the management and orchestration of end-to-end network slices. In: IEEE International Conference on Cloud Networking - CloudNet, November 2019

    Google Scholar 

  18. Touch, J.D.: X-bone. Technical report. University of Southern California Marina Del Rey Information Sciences Inst (2003)

    Google Scholar 

  19. Jiang, X., Xu, D.: Violin: virtual internetworking on overlay infrastructure. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) Parallel and Distributed Processing and Applications, pp. 937–946. Springer, Heidelberg (2005)

    Google Scholar 

  20. Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J.: In vini veritas: realistic and controlled network experimentation. SIGCOMM Comput. Commun. Rev. 36, 3–14 (2006)

    Article  Google Scholar 

  21. Sherwood, R., Gibb, G., Yap, K.-K., Appenzeller, G., Casado, M., McKeown, N., Parulkar, G.: Flowvisor: a network virtualization layer. OpenFlow Switch Consortium, Technical report, vol. 1, p. 132 (2009)

    Google Scholar 

  22. Suñé, M., Bergesio, L., Woesner, H., Rothe, T., Köpsel, A., Colle, D., Puype, B., Simeonidou, D., Nejabati, R., Channegowda, M., Kind, M., Dietz, T., Autenrieth, A., Kotronis, V., Salvadori, E., Salsano, S., Körner, M., Sharma, S.: Design and implementation of the OFELIA FP7 facility: the European openflow testbed. Comput. Netw. 61, 132–150 (2014). Special issue on Future Internet Testbeds - Part I

    Article  Google Scholar 

  23. Császár, A., John, W., Kind, M., Meirosu, C., Pongrácz, G., Staessens, D., Takács, A., Westphal, F.: Unifying cloud and carrier network: Eu fp7 project unify. In: 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing, pp. 452–457, December 2013

    Google Scholar 

  24. Sonkoly, B., Czentye, J., Szabo, R., Jocha, D., Elek, J., Sahhaf, S., Tavernier, W., Risso, F.: Multi-domain service orchestration over networks and clouds: a unified approach. SIGCOMM Comput. Commun. Rev. 45, 377–378 (2015)

    Article  Google Scholar 

  25. Francescon, A., Baggio, G., Fedrizzi, R., Orsini, E., Riggio, R.: X-MANO: an open-source platform for cross-domain management and orchestration. In: 2017 IEEE Conference on Network Softwarization (NetSoft), pp. 1–6, July 2017

    Google Scholar 

  26. Peterson, L., Baker, S., De Leenheer, M., Bavier, A., Bhatia, S., Wawrzoniak, M., Nelson, J., Hartman, J.: XoS: an extensible cloud operating system. In: Proceedings of the 2nd International Workshop on Software-Defined Ecosystems, BigSystem 2015, pp. 23–30. ACM, New York (2015)

    Google Scholar 

  27. Bernardos, C.J., Gerö, B.P., Di Girolamo, M., Kern, A., Martini, B., Vaishnavi, I.: 5GEx: realising a Europe-wide multi-domain framework for software-defined infrastructures. Trans. Emerg. Telecommun. Technol. 27(9), 1271–1280 (2016)

    Article  Google Scholar 

  28. ETSI, O.: Open source mano. OSM home page (2016)

    Google Scholar 

  29. Dräxler, S., Karl, H., Peuster, M., Kouchaksaraei, H.R., Bredel, M., Lessmann, J., Soenen, T., Tavernier, W., Mendel-Brin, S., Xilouris, G.: Sonata: service programming and orchestration for virtualized software networks. In: 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 973–978, May 2017

    Google Scholar 

  30. Silva, F.S.D., Lemos, M.O.O., Medeiros, A., Neto, A.V., Pasquini, R., Moura, D., Rothenberg, C., Mamatas, L., Correa, S.L., Cardoso, K.V., Marcondes, C., ABelem, A., Nascimento, M., Galis, A., Contreras, L., Serrat, J., Papadimitriou, P.: Necos project: towards lightweight slicing of cloud federated infrastructures. In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 406–414, June 2018

    Google Scholar 

  31. Gavras, A., Karila, A., Fdida, S., May, M., Potts, M.: Future internet research and experimentation: the fire initiative. SIGCOMM Comput. Commun. Rev. 37, 89–92 (2007)

    Article  Google Scholar 

  32. Silva, A.P., Tranoris, C., Denazis, S., Sargento, S., Pereira, J., Luís, M., Moreira, R., Silva, F., Vidal, I., Nogales, B., Nejabati, R., Simeonidou, D.: 5GinFIRE: an end-to-end open5G vertical network function ecosystem. Ad Hoc Netw. 93, 101895 (2019)

    Article  Google Scholar 

  33. Barakabitze, A.A., Ahmad, A., Mijumbi, R., Hines, A.: 5G network slicing using SDN and NFV: a survey of taxonomy, architectures and future challenges. Comput. Netw. 167, 106984 (2020)

    Article  Google Scholar 

  34. Gifre, L., Ruiz, M., Velasco, L.: CASTOR: a monitoring and data analytics architecture to support autonomic domain and slice networking. In: 2018 20th International Conference on Transparent Optical Networks (ICTON), pp. 1–4, July 2018

    Google Scholar 

  35. Salman, O., Elhajj, I.H., Kayssi, A., Chehab, A.: SDN controllers: a comparative study. In: 2016 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1–6, April 2016

    Google Scholar 

  36. Stancu, A.L., Halunga, S., Vulpe, A., Suciu, G., Fratu, O., Popovici, E.C.: A comparison between several software defined networking controllers. In: 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), pp. 223–226, October 2015

    Google Scholar 

  37. Ventre, P.L., Tajiki, M.M., Salsano, S., Filsfils, C.: SDN architecture and southbound APIs for IPV6 segment routing enabled wide area networks. IEEE Trans. Netw. Serv. Manag. 15, 1378–1392 (2018)

    Article  Google Scholar 

  38. Google, Namebench: Open-source DNS Benchmark Utility (2019). https://code.google.com/archive/p/namebench/. Accessed 25 Nov 2019

  39. Høiland-Jørgensen, T., Grazia, C.A., Hurtig, P., Brunstrom, A.: Flent: the flexible network tester. In: Proceedings of the 11th EAI International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2017, pp. 120–125. ACM, New York (2017)

    Google Scholar 

  40. Ager, B., Mühlbauer, W., Smaragdakis, G., Uhlig, S.: Comparing DNS resolvers in the wild. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement IMC 2010, pp. 15–21. ACM, New York (2010)

    Google Scholar 

  41. Mao, Z.M., Cranor, C.D., Douglis, F., Rabinovich, M., Spatscheck, O., Wang, J.: A precise and efficient evaluation of the proximity between web clients and their local DNS servers. In: USENIX Annual Technical Conference, General Track, pp. 229–242 (2002)

    Google Scholar 

  42. Shaikh, A., Tewari, R., Agrawal, M.: On the effectiveness of DNS-based server selection. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 3, pp. 1801–1810, April 2001

    Google Scholar 

  43. Alexa top sites (2019). http://www.alexa.com/topsites. Accessed 25 Nov 2019

  44. Qian, H., Rabinovich, M., Al-Qudah, Z.: Bringing local DNS servers close to their clients. In: 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, pp. 1–6, December 2011

    Google Scholar 

  45. Zhu, L., Hu, Z., Heidemann, J., Wessels, D., Mankin, A., Somaiya, N.: T-DNS: connection-oriented DNS to improve privacy and security (poster abstract). SIGCOMM Comput. Commun. Rev. 44, 379–380 (2014)

    Article  Google Scholar 

  46. Shulman, H.: Pretty bad privacy: pitfalls of DNS encryption. In: Proceedings of the 13th Workshop on Privacy in the Electronic Society, WPES 2014, pp. 191–200. ACM, New York (2014)

    Google Scholar 

  47. Nakatsuka, Y., Paverd, A., Tsudik, G.: PDoT. In: Proceedings of the 35th Annual Computer Security Applications Conference on - ACSAC 2019 (2019)

    Google Scholar 

  48. Chen, J., Ma, Y., Kuo, H., Hung, W.: Enterprise visor: a software-defined enterprise network resource management engine. In: 2014 IEEE/SICE International Symposium on System Integration, pp. 381–384, December 2014

    Google Scholar 

  49. Anvari, M., Broderick, T., Stein, H., Chapman, T., Ghodoussi, M., Birch, D.W., Mckinley, C., Trudeau, P., Dutta, S., Goldsmith, C.H.: The impact of latency on surgical precision and task completion during robotic-assisted remote telepresence surgery. Comput. Aided Surg. 10(2), 93–99 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreira, R., Rosa, P.F., Aguiar, R.L.A., de Oliveira Silva, F. (2020). Enabling Multi-domain and End-to-End Slice Orchestration for Virtualization Everything Functions (VxFs). In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_73

Download citation

Publish with us

Policies and ethics