Abstract
We present a theoretical framework and an experimental tool to study behavior of heterogeneous multi-agent systems composed of the two classes of automata-based agents: Cellular Automata (CA) and Learning Automata (LA). Our general aim is to use this framework to solve global optimization problems in a distributed way using the collective behavior of agents. The common feature of CA and LA systems is the ability to show a collective behavior which, however, is understood differently. It is natural for LA-based agents that are able to learn and adapt, but for CA-based agents, extra features have to be used like the second–order CA. We create a theoretical framework of the system based on a spatial Prisoner’s Dilemma (PD) game in which both classes of players may participate. We introduce to the game some mechanisms like local profit sharing, mutation, and competition which stimulate the evolutionary process of developing collective behavior among players. We present some results of an experimental study showing the emergence of collective behavior in such systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Östberg, P.-O., Byrne, J., et al.: Reliable capacity provisioning for distributed Cloud/Edge/Fog computing applications. In: European Conference on Networks and Communications, EuCNC 2017, pp. 1–6 (2017)
Wolfram, S.: A New Kind of Science. Wolfram-Media, Champaign (2002)
Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Printice-Hall Inc., Upper Saddle River (1989)
Tsetlin, M.L.: Automaton Theory and Modeling of Biological Systems. Academic Press, New York (1973)
Osborne, M.: Introduction to Game Theory. Oxford University Press, Oxford (2009)
Katsumata, Y., Ishida, Y.: On a membrane formation in a spatio-temporally generalized prisoner’s dilemma. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 60–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4_8
Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)
Moniz Pereira, L., Lenaerts, T., Martinez-Vaquero, L.A., Anh Han, T.: Social manifestation of guilt leads to stable cooperation in multi-agent systems. In: Autonomous Agents and MultiAgent Systems, AAMAS 2017, Richland, SC, pp. 1422–1430 (2017)
Rossi, F., Bandyopadhyay, S., Wolf, M., Pavone, M.: Review of multi-agent algorithms for collective behavior: a structural taxonomy. IFAC-PapersOnLine 51(12), 112–117 (2018). IFAC Workshop on Networked & Autonomous Air & Space Systems NAASS
Peleteiro, A., Burguillo, J.C., Bazzan, A.L.: Emerging cooperation in the spatial IPD with reinforcement learning and coalitions. In: Bouvry, P., González-Vélez, H., Kołodziej, J. (eds.) Intelligent Decision Systems in Large-Scale Distributed Environments. Studies in Computational Intelligence, vol. 362, pp. 187–206. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21271-0_9
Axelrod, R.: The Evolution of Cooperation. Basic Books Publishing, New York (1984)
Axelrod, R.: The evolution of strategies in the iterated prisoner’s dilemma. In: The Dynamics of Norms (1987)
Yao, X., Darwen, P.J.: An experimental study of N-person iterated prisoner’s dilemma games. In: Yao, X. (ed.) EvoWorkshops 1993-1994. LNCS, vol. 956, pp. 90–108. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60154-6_50
Seredynski, F.: Competitive coevolutionary multi-agent systems: the application to mapping and scheduling problems. J. Parallel Distrib. Comput. 47(1), 39–57 (1997)
Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)
Nowak, M.A., May, R.M.: The spatial dilemmas of evolution. Int. J. Bifurcat. Chaos 3(1), 35–78 (1993)
Nowak, M.A., Bonhoeffer, S., May, R.M.: More spatial games. Int. J. Bifurcat. Chaos 4(1), 33–56 (1994)
Ishibuchi, H., Namikawa, N.: Evolution of iterated prisoner’s dilemma game strategies in structured demes under random pairing in game playing. IEEE Trans. Evol. Comput. 9(6), 552–561 (2005)
Howley, E., O’Riordan, C.: The emergence of cooperation among agents using simple fixed bias tagging. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1011–1016 (2005)
Seredyński, F., Gąsior, J.: Emergence of collective behavior in large cellular automata-based multi-agent systems. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11509, pp. 676–688. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20915-5_60
Warschawski, W.I.: Kollektives Verhalten von Automaten. Academic-Verlag, Berlin (1978)
Gąsior, J., Seredyński, F.: Security-aware distributed job scheduling in cloud computing systems: a game-theoretic cellular automata-based approach. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11537, pp. 449–462. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22741-8_32
Gąsior, J., Seredyński, F., Hoffmann, R.: Towards self-organizing sensor networks: game-theoretic \(\epsilon \)-learning automata-based approach. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 125–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8_11
Acknowledgement
The authors wish to thank the student of UKSW Dominik Nalewajk for implementation of the simulator.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Seredyński, F., Gąsior, J., Hoffmann, R., Désérable, D. (2020). Experiments with Heterogenous Automata-Based Multi-agent Systems. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12044. Springer, Cham. https://doi.org/10.1007/978-3-030-43222-5_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-43222-5_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43221-8
Online ISBN: 978-3-030-43222-5
eBook Packages: Computer ScienceComputer Science (R0)