Visualization of Tree-Structured Data Using Web Service Composition | SpringerLink
Skip to main content

Visualization of Tree-Structured Data Using Web Service Composition

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019)

Abstract

This article reiterates on the recently presented hierarchy visualization service HiViSer and its API [51]. It illustrates its decomposition into modular services for data processing and visualization of tree-structured data. The decomposition is aligned to the common structure of visualization pipelines [48] and, in this way, facilitates attribution of the services’ capabilities. Suitable base resource types are proposed and their structure and relations as well as a subtyping concept for specifics in hierarchy visualization implementations are detailed. Moreover, state-of-the-art quality standards and techniques for self-documentation and discovery of components are incorporated. As a result, a blueprint for Web service design, architecture, modularization, and composition is presented, targeting fundamental visualization tasks of tree-structured data, i.e., gathering, processing, rendering, and provisioning. Finally, the applicability of the service components and the API is evaluated in the context of exemplary applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    L. Micallef: “AI Seminar: Towards an AI-Human Symbiosis Using Information Visualization”, 2018. https://ai.ku.dk/events/ai-seminar-luana-micallef.

  2. 2.

    http://flare.prefuse.org/.

  3. 3.

    https://d3js.org/.

  4. 4.

    https://developers.google.com/chart/.

  5. 5.

    https://chartjs.org/.

  6. 6.

    https://webgl-operate.org.

  7. 7.

    https://shiny.rstudio.com/.

  8. 8.

    http://xmlrpc.scripting.com/spec.html.

  9. 9.

    https://jsonrpc.org/specification.

  10. 10.

    https://grpc.io/.

  11. 11.

    https://www.openapis.org/.

  12. 12.

    http://openapi.tools/.

References

  1. Auber, D., Huet, C., Lambert, A., Renoust, B., Sallaberry, A., Saulnier, A.: GosperMap: using a Gosper curve for laying out hierarchical data. IEEE Trans. Visual. Comput. Graphics 19(11), 1820–1832 (2013). https://doi.org/10.1109/TVCG.2013.91

    Article  Google Scholar 

  2. Balogh, G., Szabolics, A., Beszédes, Á.: CodeMetropolis: eclipse over the city of source code. In: Proceedings of IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2015, pp. 271–276 (2015). https://doi.org/10.1109/SCAM.2015.7335425

  3. Baudel, T., Broeksema, B.: Capturing the design space of sequential space-filling layouts. IEEE Trans. Visual. Comput. Graphics 18(12), 2593–2602 (2012). https://doi.org/10.1109/TVCG.2012.205

    Article  Google Scholar 

  4. Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making effective use of 2D space to display hierarchies. ACM Trans. Graph. 21(4), 833–854 (2002). https://doi.org/10.1145/571647.571649

    Article  Google Scholar 

  5. Behr, J., Eschler, P., Jung, Y., Zöllner, M.: X3DOM - a DOM-based HTML5/ X3D integration model. In: Proceedings of ACM International Conference on 3D Web Technology, Web3D 2009, pp. 127–135 (2009). https://doi.org/10.1145/1559764.1559784

  6. Bethge, J., Hahn, S., Döllner, J.: Improving layout quality by mixing treemap-layouts based on data-change characteristics. In: Proceedings of EG International Conference on Vision, Modeling & Visualization, VMV 2017 (2017). https://doi.org/10.2312/vmv.20171261

  7. Bohnet, J., Döllner, J.: Monitoring code quality and development activity by software maps. In: Proceedings of ACM Workshop on Managing Technical Debt, MTD 2011, pp. 9–16 (2011). https://doi.org/10.1145/1985362.1985365

  8. Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. IEEE Trans. Visual. Comput. Graphics 15(6), 1121–1128 (2009). https://doi.org/10.1109/TVCG.2009.174

    Article  Google Scholar 

  9. Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Visual. Comput. Graphics 17(12), 2301–2309 (2011). https://doi.org/10.1109/TVCG.2011.185

    Article  Google Scholar 

  10. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017). https://doi.org/10.1145/2983528

    Article  Google Scholar 

  11. Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: de Leeuw, W.C., van Liere, R. (eds.) Data Visualization 2000. Eurographics, pp. 33–42. Springer, Vienna (2000). https://doi.org/10.1007/978-3-7091-6783-0_4

    Chapter  Google Scholar 

  12. Carpendale, M.S.T.: Considering visual variables as a basis for information visualization. Technical report, University of Calgary, Canada (2003). https://doi.org/10.11575/PRISM/30495. nr. 2001–693-14

  13. Caudwell, A.H.: Gource: visualizing software version control history. In: Proceedings of ACM International Conference Companion on Object Oriented Programming Systems Languages and Applications Companion, OOPSLA 2010, pp. 73–74 (2010). https://doi.org/10.1145/1869542.1869554

  14. Chazard, E., Puech, P., Gregoire, M., Beuscart, R.: Using treemaps to represent medical data. IOS Stud. Health Technol. Inform. 124, 522–527 (2006). http://ebooks.iospress.nl/volumearticle/9738

    Google Scholar 

  15. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language (2007). http://www.w3.org/TR/2007/REC-wsdl20-20070626

  16. Discher, S., Richter, R., Trapp, M., Döllner, J.: Service-oriented processing and analysis of massive point clouds in geoinformation management. In: Döllner, J., Jobst, M., Schmitz, P. (eds.) Service-Oriented Mapping. LNGC, pp. 43–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-72434-8_2

    Chapter  Google Scholar 

  17. Elmqvist, N., Fekete, J.D.: Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. IEEE Trans. Visual. Comput. Graphics 16(3), 439–454 (2010). https://doi.org/10.1109/TVCG.2009.84

    Article  Google Scholar 

  18. Fielding, R.T.: REST: architectural styles and the design of network-based software architectures. Ph.D. thesis, University of California, Irvine (2000)

    Google Scholar 

  19. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10247-4

    Book  Google Scholar 

  20. Graham, M., Kennedy, J.: A survey of multiple tree visualisation. Inf. Vis. 9(4), 235–252 (2010). https://doi.org/10.1057/ivs.2009.29

    Article  Google Scholar 

  21. Guerra-Góomez, J.A., Boulanger, C., Kairam, S., Shamma, D.A.: Identifying best practices for visualizing photo statistics and galleries using treemaps. In: Proceedings of the ACM International Working Conference on Advanced Visual Interfaces, AVI 2016, pp. 60–63 (2016). https://doi.org/10.1145/2909132.2909280

  22. Hadley, M., et al.: SOAP version 1.2 part 1: messaging framework, 2nd edn. Technical report, W3C (2007). http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

  23. Hadley, M.J.: Web application description language (WADL). Technical report, Sun Microsystems Inc. (2006)

    Google Scholar 

  24. Hagedorn, B., Coors, V., Thum, S.: OGC 3D portrayal service standard. Technical report, Open Geospatial Consortium (2017). http://docs.opengeospatial.org/is/15-001r4/15-001r4.html

  25. Hahn, S., Döllner, J.: Hybrid-treemap layouting. In: Proceedings of the EG EuroVis 2017 - Short Papers, EuroVis 2017, pp. 79–83 (2017). https://doi.org/10.2312/eurovisshort.20171137

  26. Harrower, M., Brewer, C.A.: ColorBrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. 40(1), 27–37 (2003). https://doi.org/10.1179/000870403235002042

    Article  Google Scholar 

  27. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI 2005, pp. 421–430 (2005). https://doi.org/10.1145/1054972.1055031

  28. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Visual. Comput. Graphics 12(5), 741–748 (2006). https://doi.org/10.1109/TVCG.2006.147

    Article  Google Scholar 

  29. Jern, M., Rogstadius, J., Åström, T.: Treemaps and choropleth maps applied to regional hierarchical statistical data. In: Proceedings of the IEEE International Conference Information Visualisation, IV 2009, pp. 403–410 (2009). https://doi.org/10.1109/IV.2009.97

  30. Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the IEEE Visualization, Visualization 1991, pp. 284–291 (1991). https://doi.org/10.1109/VISUAL.1991.175815

  31. Kehrer, J., Hauser, H.: Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans. Visual. Comput. Graphics 19(3), 495–513 (2013). https://doi.org/10.1109/TVCG.2012.110

    Article  Google Scholar 

  32. Koller, D., et al.: Protected interactive 3D graphics via remote rendering. ACM Trans. Graph. 23(3), 695–703 (2004). https://doi.org/10.1145/1015706.1015782

    Article  Google Scholar 

  33. Limberger, D., Döllner, J.: Real-time rendering of high-quality effects using multi-frame sampling. In: Proceedings of the ACM SIGGRAPH Posters, SIGGRAPH 2016, p. 79 (2016). https://doi.org/10.1145/2945078.2945157

  34. Limberger, D., Fiedler, C., Hahn, S., Trapp, M., Döllner, J.: Evaluation of sketchiness as a visual variable for 2.5D treemaps. In: Proceedings of the IEEE International Conference Information Visualisation, IV 2016, pp. 183–189 (2016). https://doi.org/10.1109/IV.2016.61

  35. Limberger, D., Gropler, A., Buschmann, S., Döllner, J., Wasty, B.: OpenLL: an API for dynamic 2D and 3D labeling. In: Proceedings of the IEEE International Conference on Information Visualization, IV 2018, pp. 175–181 (2018). https://doi.org/10.1109/iV.2018.00039

  36. Limberger, D., Pursche, M., Klimke, J., Döllner, J.: Progressive high-quality rendering for interactive information cartography using WebGL. In: ACM Proceedings of the International Conference on 3D Web Technology, Web3D 2017, pp. 8:1–8:4 (2017). https://doi.org/10.1145/3055624.3075951

  37. Limberger, D., Scheibel, W., Hahn, S., Döllner, J.: Reducing visual complexity in software maps using importance-based aggregation of nodes. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2017, pp. 176–185 (2017). https://doi.org/10.5220/0006267501760185

  38. Limberger, D., Scheibel, W., Lemme, S., Döllner, J.: Dynamic 2.5D treemaps using declarative 3D on the web. In: Proceedings of the ACM International Conference on 3D Web Technology, Web3D 2016, pp. 33–36 (2016). https://doi.org/10.1145/2945292.2945313

  39. Limberger, D., Trapp, M., Döllner, J.: In-situ comparison for 2.5D treemaps. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2019, pp. 314–321 (2019). https://doi.org/10.5220/0007576203140321

  40. Limberger, D., Wasty, B., Trümper, J., Döllner, J.: Interactive software maps for web-based source code analysis. In: Proceedings of the ACM International Conference on 3D Web Technology, Web3D 2013, pp. 91–98 (2013). https://doi.org/10.1145/2466533.2466550

  41. Liu, S., Cao, N., Lv, H.: Interactive visual analysis of the NSF funding information. In: Proceedings of the IEEE Pacific Visualization Symposium, PacificVis 2008, pp. 183–190 (2008). https://doi.org/10.1109/PACIFICVIS.2008.4475475

  42. Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014). https://doi.org/10.1007/s00371-013-0892-3

    Article  Google Scholar 

  43. Nagamochi, H., Abe, Y.: An approximation algorithm for dissecting a rectangle into rectangles with specified areas. Discrete Appl. Math. 155(4), 523–537 (2007). https://doi.org/10.1016/j.dam.2006.08.005

    Article  MathSciNet  MATH  Google Scholar 

  44. Nguyen, Q.V., Huang, M.L.: EncCon: an approach to constructing interactive visualization of large hierarchical data. Inf. Vis. 4(1), 1–21 (2005). https://doi.org/10.1057/palgrave.ivs.9500087

    Article  Google Scholar 

  45. Park, D., Drucker, S.M., Fernandez, R., Niklas, E.: ATOM: a grammar for unit visualizations. IEEE Trans. Visual. Comput. Graphics 24(12), 3032–3043 (2018). https://doi.org/10.1109/TVCG.2017.2785807

    Article  Google Scholar 

  46. Richter, M., Söchting, M., Semmo, A., Döllner, J., Trapp, M.: Service-based processing and provisioning of image-abstraction techniques. In: Proceedings of the International Conference on Computer Graphics, Visualization and Computer Vision, WCSG 2018, pp. 79–106 (2018). https://doi.org/10.24132/CSRN.2018.2802.13

  47. Roberts, R.C., Laramee, R.S.: Visualising business data: a survey. MDPI Inf. 9(11), 285, 1–54 (2018). https://doi.org/10.3390/info9110285

    Article  Google Scholar 

  48. dos Santos, S., Brodlie, K.: Gaining understanding of multivariate and multidimensional data through visualization. Comput. Graph. 28(3), 311–325 (2004). https://doi.org/10.1016/j.cag.2004.03.013

    Article  Google Scholar 

  49. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-Lite: a grammar of interactive graphics. IEEE Trans. Visual. Comput. Graphics 23(1), 341–350 (2017). https://doi.org/10.1109/TVCG.2016.2599030

    Article  Google Scholar 

  50. Scheibel, W., Buschmann, S., Trapp, M., Döllner, J.: Attributed vertex clouds. In: GPU Zen: Advanced Rendering Techniques, Chapter: Geometry Manipulation, pp. 3–21. Bowker Identifier Services (2017)

    Google Scholar 

  51. Scheibel, W., Hartmann, J., Döllner, J.: Design and implementation of web-based hierarchy visualization services. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2019, pp. 141–152 (2019). https://doi.org/10.5220/0007693201410152

  52. Scheibel, W., Trapp, M., Döllner, J.: Interactive revision exploration using small multiples of software maps. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, VISIGRAPP/IVAPP 2016, pp. 131–138 (2016).https://doi.org/10.5220/0005694401310138

  53. Scheibel, W., Weyand, C., Döllner, J.: EvoCells - a treemap layout algorithm for evolving tree data. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2018, pp. 273–280 (2018). https://doi.org/10.5220/0006617102730280

  54. Schulz, H.J.: Treevis.net: a tree visualization reference. IEEE Comput. Graphics Appl. 31(6), 11–15 (2011). https://doi.org/10.1109/MCG.2011.103

    Article  Google Scholar 

  55. Schulz, H.J., Akbar, Z., Maurer, F.: A generative layout approach for rooted tree drawings. In: Proceedings of the IEEE Pacific Visualization Symposium, PacificVis 2013, pp. 225–232 (2013). https://doi.org/10.1109/PacificVis.2013.6596149

  56. Schulz, H.J., Hadlak, S., Schumann, H.: Point-based visualization for large hierarchies. IEEE Trans. Visual. Comput. Graphics 17(5), 598–611 (2011). https://doi.org/10.1109/TVCG.2010.89

    Article  Google Scholar 

  57. Schulz, H.J., Hadlak, S., Schumann, H.: The design space of implicit hierarchy visualization: a survey. IEEE Trans. Visual. Comput. Graphics 17(4), 393–411 (2011). https://doi.org/10.1109/TVCG.2010.79

    Article  Google Scholar 

  58. Schulz, H.J., Schumann, H.: Visualizing graphs - a generalized view. In: Proceedings of the IEEE International Conference on Information Visualization, IV 2006, pp. 166–173 (2006). https://doi.org/10.1109/IV.2006.130

  59. Slingsby, A., Dykes, J., Wood, J.: Using treemaps for variable selection in spatio-temporal visualisation. Inf. Vis. 7(3), 210–224 (2008). https://doi.org/10.1057/PALGRAVE.IVS.9500185

    Article  Google Scholar 

  60. Slingsby, A., Dykes, J., Wood, J.: Configuring hierarchical layouts to address research questions. IEEE Trans. Visual. Comput. Graphics 15(6), 977–984 (2009). https://doi.org/10.1109/TVCG.2009.128

    Article  Google Scholar 

  61. Soares, A.G., et al.: Visualizing multidimensional data in treemaps with adaptive glyphs. In: Proceedings of the IEEE International Conference Information Visualisation, IV 2018, pp. 58–63 (2018). https://doi.org/10.1109/iV.2018.00021

  62. Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek, P.: XML3D: interactive 3D graphics for the web. In: Proceedings of the ACM International Conference on 3D Web Technology, Web3D 2010, pp. 175–184 (2010). https://doi.org/10.1145/1836049.1836076

  63. Steinbrückner, F., Lewerentz, C.: Understanding software evolution with software cities. Inf. Vis. 12(2), 200–216 (2013). https://doi.org/10.1177/1473871612438785

    Article  Google Scholar 

  64. Stylos, J., Myers, B.: Mapping the space of API design decisions. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2007, pp. 50–60 (2007). https://doi.org/10.1109/VLHCC.2007.44

  65. Tak, S., Cockburn, A.: Enhanced spatial stability with hilbert and moore treemaps. IEEE Trans. Visual. Comput. Graphics 19(1), 141–148 (2013). https://doi.org/10.1109/TVCG.2012.108

    Article  Google Scholar 

  66. Tan, W., Fan, Y., Ghoneim, A., Hossain, M.A., Dustdar, S.: From the service-oriented architecture to the web API economy. IEEE Internet Comput. 20(4), 64–68 (2016). https://doi.org/10.1109/MIC.2016.74

    Article  Google Scholar 

  67. Tu, Y., Shen, H.: Visualizing changes of hierarchical data using treemaps. IEEE Trans. Visual. Comput. Graphics 13(6), 1286–1293 (2008). https://doi.org/10.1109/TVCG.2007.70529

    Article  Google Scholar 

  68. Veras, R., Collins, C.: Optimizing hierarchical visualizations with the minimum description length principle. IEEE Trans. Visual. Comput. Graphics 23(1), 631–640 (2017). https://doi.org/10.1109/TVCG.2016.2598591

    Article  Google Scholar 

  69. Vernier, E.F., Telea, A.C., Comba, J.: Quantitative comparison of dynamic treemaps for software evolution visualization. In: Proceedings of the IEEE Working Conference on Software Visualization, VISSOFT 2018, pp. 96–106 (2018). https://doi.org/10.1109/VISSOFT.2018.00018

  70. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and Systems Architecture, 1st edn. O’Reilly Media, Sebastopol (2010)

    Google Scholar 

  71. Wettel, R., Lanza, M.: Visual exploration of large-scale system evolution. In: Proceedings of the IEEE Working Conference on Reverse Engineering, WCRE 2008, pp. 219–228 (2008). https://doi.org/10.1109/WCRE.2008.55

  72. Wood, J., Brodlie, K., Seo, J., Duke, D., Walton, J.: A web services architecture for visualization. In: Proceedings of the IEEE International Conference on eScience, eScience 2008, pp. 1–7 (2008). https://doi.org/10.1109/eScience.2008.51

  73. Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N., Slingsby, A.: Sketchy rendering for information visualization. IEEE Trans. Visual. Comput. Graphics 18(12), 2749–2758 (2012). https://doi.org/10.1109/TVCG.2012.262

    Article  Google Scholar 

  74. Würfel, H., Trapp, M., Limberger, D., Döllner, J.: Natural phenomena as metaphors for visualization of trend data in interactive software maps. In: Proceedings of the EG Computer Graphics and Visual Computing, CGVC 2015 (2015). https://doi.org/10.2312/cgvc.20151246

Download references

Acknowledgments

This work was partially funded by the German Federal Ministry of Education and Research (BMBF, KMUi) within the project “BIMAP” (www.bimap-project.de) and the German Federal Ministry for Economic Affairs and Energy (BMWi, ZIM) within the projects “ScaSoMaps” and “TASAM”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Scheibel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scheibel, W., Hartmann, J., Limberger, D., Döllner, J. (2020). Visualization of Tree-Structured Data Using Web Service Composition. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41590-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41589-1

  • Online ISBN: 978-3-030-41590-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics