Abstract
This article reiterates on the recently presented hierarchy visualization service HiViSer and its API [51]. It illustrates its decomposition into modular services for data processing and visualization of tree-structured data. The decomposition is aligned to the common structure of visualization pipelines [48] and, in this way, facilitates attribution of the services’ capabilities. Suitable base resource types are proposed and their structure and relations as well as a subtyping concept for specifics in hierarchy visualization implementations are detailed. Moreover, state-of-the-art quality standards and techniques for self-documentation and discovery of components are incorporated. As a result, a blueprint for Web service design, architecture, modularization, and composition is presented, targeting fundamental visualization tasks of tree-structured data, i.e., gathering, processing, rendering, and provisioning. Finally, the applicability of the service components and the API is evaluated in the context of exemplary applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
L. Micallef: “AI Seminar: Towards an AI-Human Symbiosis Using Information Visualization”, 2018. https://ai.ku.dk/events/ai-seminar-luana-micallef.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
References
Auber, D., Huet, C., Lambert, A., Renoust, B., Sallaberry, A., Saulnier, A.: GosperMap: using a Gosper curve for laying out hierarchical data. IEEE Trans. Visual. Comput. Graphics 19(11), 1820–1832 (2013). https://doi.org/10.1109/TVCG.2013.91
Balogh, G., Szabolics, A., Beszédes, Á.: CodeMetropolis: eclipse over the city of source code. In: Proceedings of IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2015, pp. 271–276 (2015). https://doi.org/10.1109/SCAM.2015.7335425
Baudel, T., Broeksema, B.: Capturing the design space of sequential space-filling layouts. IEEE Trans. Visual. Comput. Graphics 18(12), 2593–2602 (2012). https://doi.org/10.1109/TVCG.2012.205
Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making effective use of 2D space to display hierarchies. ACM Trans. Graph. 21(4), 833–854 (2002). https://doi.org/10.1145/571647.571649
Behr, J., Eschler, P., Jung, Y., Zöllner, M.: X3DOM - a DOM-based HTML5/ X3D integration model. In: Proceedings of ACM International Conference on 3D Web Technology, Web3D 2009, pp. 127–135 (2009). https://doi.org/10.1145/1559764.1559784
Bethge, J., Hahn, S., Döllner, J.: Improving layout quality by mixing treemap-layouts based on data-change characteristics. In: Proceedings of EG International Conference on Vision, Modeling & Visualization, VMV 2017 (2017). https://doi.org/10.2312/vmv.20171261
Bohnet, J., Döllner, J.: Monitoring code quality and development activity by software maps. In: Proceedings of ACM Workshop on Managing Technical Debt, MTD 2011, pp. 9–16 (2011). https://doi.org/10.1145/1985362.1985365
Bostock, M., Heer, J.: Protovis: a graphical toolkit for visualization. IEEE Trans. Visual. Comput. Graphics 15(6), 1121–1128 (2009). https://doi.org/10.1109/TVCG.2009.174
Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Visual. Comput. Graphics 17(12), 2301–2309 (2011). https://doi.org/10.1109/TVCG.2011.185
Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017). https://doi.org/10.1145/2983528
Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: de Leeuw, W.C., van Liere, R. (eds.) Data Visualization 2000. Eurographics, pp. 33–42. Springer, Vienna (2000). https://doi.org/10.1007/978-3-7091-6783-0_4
Carpendale, M.S.T.: Considering visual variables as a basis for information visualization. Technical report, University of Calgary, Canada (2003). https://doi.org/10.11575/PRISM/30495. nr. 2001–693-14
Caudwell, A.H.: Gource: visualizing software version control history. In: Proceedings of ACM International Conference Companion on Object Oriented Programming Systems Languages and Applications Companion, OOPSLA 2010, pp. 73–74 (2010). https://doi.org/10.1145/1869542.1869554
Chazard, E., Puech, P., Gregoire, M., Beuscart, R.: Using treemaps to represent medical data. IOS Stud. Health Technol. Inform. 124, 522–527 (2006). http://ebooks.iospress.nl/volumearticle/9738
Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language (2007). http://www.w3.org/TR/2007/REC-wsdl20-20070626
Discher, S., Richter, R., Trapp, M., Döllner, J.: Service-oriented processing and analysis of massive point clouds in geoinformation management. In: Döllner, J., Jobst, M., Schmitz, P. (eds.) Service-Oriented Mapping. LNGC, pp. 43–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-72434-8_2
Elmqvist, N., Fekete, J.D.: Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. IEEE Trans. Visual. Comput. Graphics 16(3), 439–454 (2010). https://doi.org/10.1109/TVCG.2009.84
Fielding, R.T.: REST: architectural styles and the design of network-based software architectures. Ph.D. thesis, University of California, Irvine (2000)
García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10247-4
Graham, M., Kennedy, J.: A survey of multiple tree visualisation. Inf. Vis. 9(4), 235–252 (2010). https://doi.org/10.1057/ivs.2009.29
Guerra-Góomez, J.A., Boulanger, C., Kairam, S., Shamma, D.A.: Identifying best practices for visualizing photo statistics and galleries using treemaps. In: Proceedings of the ACM International Working Conference on Advanced Visual Interfaces, AVI 2016, pp. 60–63 (2016). https://doi.org/10.1145/2909132.2909280
Hadley, M., et al.: SOAP version 1.2 part 1: messaging framework, 2nd edn. Technical report, W3C (2007). http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
Hadley, M.J.: Web application description language (WADL). Technical report, Sun Microsystems Inc. (2006)
Hagedorn, B., Coors, V., Thum, S.: OGC 3D portrayal service standard. Technical report, Open Geospatial Consortium (2017). http://docs.opengeospatial.org/is/15-001r4/15-001r4.html
Hahn, S., Döllner, J.: Hybrid-treemap layouting. In: Proceedings of the EG EuroVis 2017 - Short Papers, EuroVis 2017, pp. 79–83 (2017). https://doi.org/10.2312/eurovisshort.20171137
Harrower, M., Brewer, C.A.: ColorBrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. 40(1), 27–37 (2003). https://doi.org/10.1179/000870403235002042
Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI 2005, pp. 421–430 (2005). https://doi.org/10.1145/1054972.1055031
Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Visual. Comput. Graphics 12(5), 741–748 (2006). https://doi.org/10.1109/TVCG.2006.147
Jern, M., Rogstadius, J., Åström, T.: Treemaps and choropleth maps applied to regional hierarchical statistical data. In: Proceedings of the IEEE International Conference Information Visualisation, IV 2009, pp. 403–410 (2009). https://doi.org/10.1109/IV.2009.97
Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the IEEE Visualization, Visualization 1991, pp. 284–291 (1991). https://doi.org/10.1109/VISUAL.1991.175815
Kehrer, J., Hauser, H.: Visualization and visual analysis of multifaceted scientific data: a survey. IEEE Trans. Visual. Comput. Graphics 19(3), 495–513 (2013). https://doi.org/10.1109/TVCG.2012.110
Koller, D., et al.: Protected interactive 3D graphics via remote rendering. ACM Trans. Graph. 23(3), 695–703 (2004). https://doi.org/10.1145/1015706.1015782
Limberger, D., Döllner, J.: Real-time rendering of high-quality effects using multi-frame sampling. In: Proceedings of the ACM SIGGRAPH Posters, SIGGRAPH 2016, p. 79 (2016). https://doi.org/10.1145/2945078.2945157
Limberger, D., Fiedler, C., Hahn, S., Trapp, M., Döllner, J.: Evaluation of sketchiness as a visual variable for 2.5D treemaps. In: Proceedings of the IEEE International Conference Information Visualisation, IV 2016, pp. 183–189 (2016). https://doi.org/10.1109/IV.2016.61
Limberger, D., Gropler, A., Buschmann, S., Döllner, J., Wasty, B.: OpenLL: an API for dynamic 2D and 3D labeling. In: Proceedings of the IEEE International Conference on Information Visualization, IV 2018, pp. 175–181 (2018). https://doi.org/10.1109/iV.2018.00039
Limberger, D., Pursche, M., Klimke, J., Döllner, J.: Progressive high-quality rendering for interactive information cartography using WebGL. In: ACM Proceedings of the International Conference on 3D Web Technology, Web3D 2017, pp. 8:1–8:4 (2017). https://doi.org/10.1145/3055624.3075951
Limberger, D., Scheibel, W., Hahn, S., Döllner, J.: Reducing visual complexity in software maps using importance-based aggregation of nodes. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2017, pp. 176–185 (2017). https://doi.org/10.5220/0006267501760185
Limberger, D., Scheibel, W., Lemme, S., Döllner, J.: Dynamic 2.5D treemaps using declarative 3D on the web. In: Proceedings of the ACM International Conference on 3D Web Technology, Web3D 2016, pp. 33–36 (2016). https://doi.org/10.1145/2945292.2945313
Limberger, D., Trapp, M., Döllner, J.: In-situ comparison for 2.5D treemaps. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2019, pp. 314–321 (2019). https://doi.org/10.5220/0007576203140321
Limberger, D., Wasty, B., Trümper, J., Döllner, J.: Interactive software maps for web-based source code analysis. In: Proceedings of the ACM International Conference on 3D Web Technology, Web3D 2013, pp. 91–98 (2013). https://doi.org/10.1145/2466533.2466550
Liu, S., Cao, N., Lv, H.: Interactive visual analysis of the NSF funding information. In: Proceedings of the IEEE Pacific Visualization Symposium, PacificVis 2008, pp. 183–190 (2008). https://doi.org/10.1109/PACIFICVIS.2008.4475475
Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014). https://doi.org/10.1007/s00371-013-0892-3
Nagamochi, H., Abe, Y.: An approximation algorithm for dissecting a rectangle into rectangles with specified areas. Discrete Appl. Math. 155(4), 523–537 (2007). https://doi.org/10.1016/j.dam.2006.08.005
Nguyen, Q.V., Huang, M.L.: EncCon: an approach to constructing interactive visualization of large hierarchical data. Inf. Vis. 4(1), 1–21 (2005). https://doi.org/10.1057/palgrave.ivs.9500087
Park, D., Drucker, S.M., Fernandez, R., Niklas, E.: ATOM: a grammar for unit visualizations. IEEE Trans. Visual. Comput. Graphics 24(12), 3032–3043 (2018). https://doi.org/10.1109/TVCG.2017.2785807
Richter, M., Söchting, M., Semmo, A., Döllner, J., Trapp, M.: Service-based processing and provisioning of image-abstraction techniques. In: Proceedings of the International Conference on Computer Graphics, Visualization and Computer Vision, WCSG 2018, pp. 79–106 (2018). https://doi.org/10.24132/CSRN.2018.2802.13
Roberts, R.C., Laramee, R.S.: Visualising business data: a survey. MDPI Inf. 9(11), 285, 1–54 (2018). https://doi.org/10.3390/info9110285
dos Santos, S., Brodlie, K.: Gaining understanding of multivariate and multidimensional data through visualization. Comput. Graph. 28(3), 311–325 (2004). https://doi.org/10.1016/j.cag.2004.03.013
Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-Lite: a grammar of interactive graphics. IEEE Trans. Visual. Comput. Graphics 23(1), 341–350 (2017). https://doi.org/10.1109/TVCG.2016.2599030
Scheibel, W., Buschmann, S., Trapp, M., Döllner, J.: Attributed vertex clouds. In: GPU Zen: Advanced Rendering Techniques, Chapter: Geometry Manipulation, pp. 3–21. Bowker Identifier Services (2017)
Scheibel, W., Hartmann, J., Döllner, J.: Design and implementation of web-based hierarchy visualization services. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2019, pp. 141–152 (2019). https://doi.org/10.5220/0007693201410152
Scheibel, W., Trapp, M., Döllner, J.: Interactive revision exploration using small multiples of software maps. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 2: IVAPP, VISIGRAPP/IVAPP 2016, pp. 131–138 (2016).https://doi.org/10.5220/0005694401310138
Scheibel, W., Weyand, C., Döllner, J.: EvoCells - a treemap layout algorithm for evolving tree data. In: Proceedings of the SciTePress International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, VISIGRAPP/IVAPP 2018, pp. 273–280 (2018). https://doi.org/10.5220/0006617102730280
Schulz, H.J.: Treevis.net: a tree visualization reference. IEEE Comput. Graphics Appl. 31(6), 11–15 (2011). https://doi.org/10.1109/MCG.2011.103
Schulz, H.J., Akbar, Z., Maurer, F.: A generative layout approach for rooted tree drawings. In: Proceedings of the IEEE Pacific Visualization Symposium, PacificVis 2013, pp. 225–232 (2013). https://doi.org/10.1109/PacificVis.2013.6596149
Schulz, H.J., Hadlak, S., Schumann, H.: Point-based visualization for large hierarchies. IEEE Trans. Visual. Comput. Graphics 17(5), 598–611 (2011). https://doi.org/10.1109/TVCG.2010.89
Schulz, H.J., Hadlak, S., Schumann, H.: The design space of implicit hierarchy visualization: a survey. IEEE Trans. Visual. Comput. Graphics 17(4), 393–411 (2011). https://doi.org/10.1109/TVCG.2010.79
Schulz, H.J., Schumann, H.: Visualizing graphs - a generalized view. In: Proceedings of the IEEE International Conference on Information Visualization, IV 2006, pp. 166–173 (2006). https://doi.org/10.1109/IV.2006.130
Slingsby, A., Dykes, J., Wood, J.: Using treemaps for variable selection in spatio-temporal visualisation. Inf. Vis. 7(3), 210–224 (2008). https://doi.org/10.1057/PALGRAVE.IVS.9500185
Slingsby, A., Dykes, J., Wood, J.: Configuring hierarchical layouts to address research questions. IEEE Trans. Visual. Comput. Graphics 15(6), 977–984 (2009). https://doi.org/10.1109/TVCG.2009.128
Soares, A.G., et al.: Visualizing multidimensional data in treemaps with adaptive glyphs. In: Proceedings of the IEEE International Conference Information Visualisation, IV 2018, pp. 58–63 (2018). https://doi.org/10.1109/iV.2018.00021
Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek, P.: XML3D: interactive 3D graphics for the web. In: Proceedings of the ACM International Conference on 3D Web Technology, Web3D 2010, pp. 175–184 (2010). https://doi.org/10.1145/1836049.1836076
Steinbrückner, F., Lewerentz, C.: Understanding software evolution with software cities. Inf. Vis. 12(2), 200–216 (2013). https://doi.org/10.1177/1473871612438785
Stylos, J., Myers, B.: Mapping the space of API design decisions. In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2007, pp. 50–60 (2007). https://doi.org/10.1109/VLHCC.2007.44
Tak, S., Cockburn, A.: Enhanced spatial stability with hilbert and moore treemaps. IEEE Trans. Visual. Comput. Graphics 19(1), 141–148 (2013). https://doi.org/10.1109/TVCG.2012.108
Tan, W., Fan, Y., Ghoneim, A., Hossain, M.A., Dustdar, S.: From the service-oriented architecture to the web API economy. IEEE Internet Comput. 20(4), 64–68 (2016). https://doi.org/10.1109/MIC.2016.74
Tu, Y., Shen, H.: Visualizing changes of hierarchical data using treemaps. IEEE Trans. Visual. Comput. Graphics 13(6), 1286–1293 (2008). https://doi.org/10.1109/TVCG.2007.70529
Veras, R., Collins, C.: Optimizing hierarchical visualizations with the minimum description length principle. IEEE Trans. Visual. Comput. Graphics 23(1), 631–640 (2017). https://doi.org/10.1109/TVCG.2016.2598591
Vernier, E.F., Telea, A.C., Comba, J.: Quantitative comparison of dynamic treemaps for software evolution visualization. In: Proceedings of the IEEE Working Conference on Software Visualization, VISSOFT 2018, pp. 96–106 (2018). https://doi.org/10.1109/VISSOFT.2018.00018
Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and Systems Architecture, 1st edn. O’Reilly Media, Sebastopol (2010)
Wettel, R., Lanza, M.: Visual exploration of large-scale system evolution. In: Proceedings of the IEEE Working Conference on Reverse Engineering, WCRE 2008, pp. 219–228 (2008). https://doi.org/10.1109/WCRE.2008.55
Wood, J., Brodlie, K., Seo, J., Duke, D., Walton, J.: A web services architecture for visualization. In: Proceedings of the IEEE International Conference on eScience, eScience 2008, pp. 1–7 (2008). https://doi.org/10.1109/eScience.2008.51
Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N., Slingsby, A.: Sketchy rendering for information visualization. IEEE Trans. Visual. Comput. Graphics 18(12), 2749–2758 (2012). https://doi.org/10.1109/TVCG.2012.262
Würfel, H., Trapp, M., Limberger, D., Döllner, J.: Natural phenomena as metaphors for visualization of trend data in interactive software maps. In: Proceedings of the EG Computer Graphics and Visual Computing, CGVC 2015 (2015). https://doi.org/10.2312/cgvc.20151246
Acknowledgments
This work was partially funded by the German Federal Ministry of Education and Research (BMBF, KMUi) within the project “BIMAP” (www.bimap-project.de) and the German Federal Ministry for Economic Affairs and Energy (BMWi, ZIM) within the projects “ScaSoMaps” and “TASAM”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Scheibel, W., Hartmann, J., Limberger, D., Döllner, J. (2020). Visualization of Tree-Structured Data Using Web Service Composition. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-41590-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41589-1
Online ISBN: 978-3-030-41590-7
eBook Packages: Computer ScienceComputer Science (R0)