Authenticated Encryption Based on Lesamnta-LW Hashing Mode | SpringerLink
Skip to main content

Authenticated Encryption Based on Lesamnta-LW Hashing Mode

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2019 (ICISC 2019)

Abstract

Authenticated encryption refers to symmetric cryptography providing both privacy and authenticity. It is most common to construct it as a block-cipher mode of operation. Another promising approach is to construct it based on cryptographic hashing. This paper proposes a nonce-based authenticated encryption scheme based on the Lesamnta-LW hashing mode. Lesamnta-LW is a block-cipher-based iterated hash function, which is specified in the ISO/IEC 29192-5 lightweight hash-function standard. This paper also shows that the proposed scheme is secure if the underlying block cipher is a pseudorandom permutation. Both of the other ISO/IEC 29192-5 mechanisms, PHOTON and SPONGENT, are hardware-oriented sponge-based hash functions, and nonce-based authenticated encryption schemes can also be constructed based on them. On the other hand, Lesamnta-LW is a software-oriented Merkle-Damgård hash function. Thus, the proposed scheme is a new option for authenticated encryption based on lightweight cryptographic hashing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to securely release unverified plaintext in authenticated encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_6

    Chapter  MATH  Google Scholar 

  2. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    Chapter  Google Scholar 

  3. Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: TEDT, a leakage-resilient AEAD mode for high (physical) security applications. Cryptology ePrint Archive, Report 2019/137 (2019). https://eprint.iacr.org/2019/137

  4. Berti, F., Pereira, O., Peters, T., Standaert, F.: On leakage-resilient authenticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3), 271–293 (2017). https://doi.org/10.13154/tosc.v2017.i3.271-293

    Article  Google Scholar 

  5. Berti, F., Pereira, O., Standaert, F.-X.: Reducing the cost of authenticity with leakages: a \({\sf CIML2}\)-secure \({\sf AE}\) scheme with one call to a strongly protected tweakable block cipher. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 229–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_12

    Chapter  Google Scholar 

  6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop (2007)

    Google Scholar 

  7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak sponge function family (2008). http://keccak.noekeon.org

  8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_19

    Chapter  Google Scholar 

  9. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_21

    Chapter  Google Scholar 

  10. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0

    Book  MATH  Google Scholar 

  11. Cogliani, S., et al.: OMD: a compression function mode of operation for authenticated encryption. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 112–128. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_7

    Chapter  Google Scholar 

  12. Damgård, I.: A design principle for hash functions. In: Brassard [10], pp. 416–427

    Google Scholar 

  13. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symmetric Cryptol. 2017(1), 80–105 (2017). https://doi.org/10.13154/tosc.v2017.i1.80-105

    Article  Google Scholar 

  14. FIPS PUB 180–4: Secure hash standard (SHS), August 2015

    Google Scholar 

  15. FIPS PUB 197: Advanced encryption standard (AES) (2001)

    Google Scholar 

  16. FIPS PUB 202: SHA-3 standard: Permutation-based hash and extendable-output functions (2015)

    Google Scholar 

  17. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  18. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Authenticated encryption with nonce misuse and physical leakages: definitions, separation results, and leveled constructions. Cryptology ePrint Archive, Report 2018/484 (2018). https://eprint.iacr.org/2018/484

  19. Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards low-energy leakage-resistant authenticated encryption from the duplex sponge construction. Cryptology ePrint Archive, Report 2019/193 (2019). https://eprint.iacr.org/2019/193

  20. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

    Chapter  Google Scholar 

  21. Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: An AES based 256-bit hash function for lightweight applications: Lesamnta-LW. IEICE Trans. Fundam. E95–A(1), 89–99 (2012)

    Article  Google Scholar 

  22. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_2

    Chapter  Google Scholar 

  23. ISO/IEC 19772: Information technology – security techniques – authenticated encryption (2009)

    Google Scholar 

  24. ISO/IEC 29192-5: Information technology – security techniques – lightweight cryptography – part 5: Hash-functions (2016)

    Google Scholar 

  25. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_32

    Chapter  Google Scholar 

  26. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic private-key encryption. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 245–254 (2000)

    Google Scholar 

  27. Merkle, R.C.: One way hash functions and DES. In: Brassard [10], pp. 428–446

    Google Scholar 

  28. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_15

    Chapter  Google Scholar 

  29. NIST Special Publication 800-38C: Recommendation for block cipher modes of operation: The CCM mode for authentication and confidentiality (2004)

    Google Scholar 

  30. NIST Special Publication 800-38D: Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and GMAC (2007)

    Google Scholar 

  31. Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015, pp. 96–108. ACM (2015). https://doi.org/10.1145/2810103.2813626

  32. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_22

    Chapter  MATH  Google Scholar 

  33. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of operation for efficient authenticated encryption. In: ACM Conference on Computer and Communications Security, pp. 196–205 (2001)

    Google Scholar 

  34. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

    Chapter  Google Scholar 

Download references

Acknowledgements

The first author was supported in part by JSPS KAKENHI Grant Number JP18H05289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hirose, S., Kuwakado, H., Yoshida, H. (2020). Authenticated Encryption Based on Lesamnta-LW Hashing Mode. In: Seo, J. (eds) Information Security and Cryptology – ICISC 2019. ICISC 2019. Lecture Notes in Computer Science(), vol 11975. Springer, Cham. https://doi.org/10.1007/978-3-030-40921-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40921-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40920-3

  • Online ISBN: 978-3-030-40921-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics