Abstract
Authenticated encryption refers to symmetric cryptography providing both privacy and authenticity. It is most common to construct it as a block-cipher mode of operation. Another promising approach is to construct it based on cryptographic hashing. This paper proposes a nonce-based authenticated encryption scheme based on the Lesamnta-LW hashing mode. Lesamnta-LW is a block-cipher-based iterated hash function, which is specified in the ISO/IEC 29192-5 lightweight hash-function standard. This paper also shows that the proposed scheme is secure if the underlying block cipher is a pseudorandom permutation. Both of the other ISO/IEC 29192-5 mechanisms, PHOTON and SPONGENT, are hardware-oriented sponge-based hash functions, and nonce-based authenticated encryption schemes can also be constructed based on them. On the other hand, Lesamnta-LW is a software-oriented Merkle-Damgård hash function. Thus, the proposed scheme is a new option for authenticated encryption based on lightweight cryptographic hashing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to securely release unverified plaintext in authenticated encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_6
Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41
Berti, F., Guo, C., Pereira, O., Peters, T., Standaert, F.X.: TEDT, a leakage-resilient AEAD mode for high (physical) security applications. Cryptology ePrint Archive, Report 2019/137 (2019). https://eprint.iacr.org/2019/137
Berti, F., Pereira, O., Peters, T., Standaert, F.: On leakage-resilient authenticated encryption with decryption leakages. IACR Trans. Symmetric Cryptol. 2017(3), 271–293 (2017). https://doi.org/10.13154/tosc.v2017.i3.271-293
Berti, F., Pereira, O., Standaert, F.-X.: Reducing the cost of authenticity with leakages: a \({\sf CIML2}\)-secure \({\sf AE}\) scheme with one call to a strongly protected tweakable block cipher. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 229–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_12
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT Hash Workshop (2007)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak sponge function family (2008). http://keccak.noekeon.org
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge: single-pass authenticated encryption and other applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_19
Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_21
Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0
Cogliani, S., et al.: OMD: a compression function mode of operation for authenticated encryption. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 112–128. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_7
Damgård, I.: A design principle for hash functions. In: Brassard [10], pp. 416–427
Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symmetric Cryptol. 2017(1), 80–105 (2017). https://doi.org/10.13154/tosc.v2017.i1.80-105
FIPS PUB 180–4: Secure hash standard (SHS), August 2015
FIPS PUB 197: Advanced encryption standard (AES) (2001)
FIPS PUB 202: SHA-3 standard: Permutation-based hash and extendable-output functions (2015)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Authenticated encryption with nonce misuse and physical leakages: definitions, separation results, and leveled constructions. Cryptology ePrint Archive, Report 2018/484 (2018). https://eprint.iacr.org/2018/484
Guo, C., Pereira, O., Peters, T., Standaert, F.X.: Towards low-energy leakage-resistant authenticated encryption from the duplex sponge construction. Cryptology ePrint Archive, Report 2019/193 (2019). https://eprint.iacr.org/2019/193
Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13
Hirose, S., Ideguchi, K., Kuwakado, H., Owada, T., Preneel, B., Yoshida, H.: An AES based 256-bit hash function for lightweight applications: Lesamnta-LW. IEICE Trans. Fundam. E95–A(1), 89–99 (2012)
Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_2
ISO/IEC 19772: Information technology – security techniques – authenticated encryption (2009)
ISO/IEC 29192-5: Information technology – security techniques – lightweight cryptography – part 5: Hash-functions (2016)
Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_32
Katz, J., Yung, M.: Complete characterization of security notions for probabilistic private-key encryption. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 245–254 (2000)
Merkle, R.C.: One way hash functions and DES. In: Brassard [10], pp. 428–446
Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_15
NIST Special Publication 800-38C: Recommendation for block cipher modes of operation: The CCM mode for authentication and confidentiality (2004)
NIST Special Publication 800-38D: Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and GMAC (2007)
Pereira, O., Standaert, F., Vivek, S.: Leakage-resilient authentication and encryption from symmetric cryptographic primitives. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015, pp. 96–108. ACM (2015). https://doi.org/10.1145/2810103.2813626
Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_22
Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of operation for efficient authenticated encryption. In: ACM Conference on Computer and Communications Security, pp. 196–205 (2001)
Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23
Acknowledgements
The first author was supported in part by JSPS KAKENHI Grant Number JP18H05289.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hirose, S., Kuwakado, H., Yoshida, H. (2020). Authenticated Encryption Based on Lesamnta-LW Hashing Mode. In: Seo, J. (eds) Information Security and Cryptology – ICISC 2019. ICISC 2019. Lecture Notes in Computer Science(), vol 11975. Springer, Cham. https://doi.org/10.1007/978-3-030-40921-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-40921-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-40920-3
Online ISBN: 978-3-030-40921-0
eBook Packages: Computer ScienceComputer Science (R0)