Maximum Bipartite Subgraph of Geometric Intersection Graphs | SpringerLink
Skip to main content

Maximum Bipartite Subgraph of Geometric Intersection Graphs

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12049))

Included in the following conference series:

  • 612 Accesses

Abstract

We study the Maximum Bipartite Subgraph (MBS) problem, which is defined as follows. Given a set S of n geometric objects in the plane, we want to compute a maximum-size subset \(S'\subseteq S\) such that the intersection graph of the objects in \(S'\) is bipartite. We first show that the \(\texttt {MBS}\) problem is \(\texttt {NP}\)-hard on geometric graphs for which the maximum independent set is \(\texttt {NP}\)-hard (hence, it is \(\texttt {NP}\)-hard even on unit squares and unit disks). On the algorithmic side, we first give a simple \(\mathcal {O}(n)\)-time algorithm that solves the \(\texttt {MBS}\) problem on a set of n intervals. Then, we give an \(\mathcal {O}(n^2)\)-time algorithm that computes a near-optimal solution for the problem on circular-arc graphs. Moreover, for the approximability of the problem, we first present a \(\texttt {PTAS}\) for the problem on unit squares and unit disks. Then, we present efficient approximation algorithms with small-constant factors for the problem on unit squares, unit disks and unit-height rectangles. Finally, we study a closely related geometric problem, called Maximum Triangle-free Subgraph (\({{\texttt {\textit{MTFS}}}}\)), where the objective is the same as that of \(\texttt {MBS}\) except the intersection graph induced by the set \(S'\) needs to be triangle-free only (instead of being bipartite).

This work is supported in part by Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7549
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoshima, K., Iri, M.: Comments on F. Hadlock’s paper: finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 6(1), 86 (1977)

    Article  MathSciNet  Google Scholar 

  2. Baïou, M., Barahona, F.: Maximum weighted induced bipartite subgraphs and acyclic subgraphs of planar cubic graphs. SIAM J. Discrete Math. 30(2), 1290–1301 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bose, P., et al.: Computing maximum independent set on outerstring graphs and their relatives. In: Proceedings of the 16th International Symposium on Algorithms and Data Structures (WADS 2019), Edmonton, AB, Canada (2019)

    Google Scholar 

  4. Brandstädt, A.: On improved time bounds for permutation graph problems. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 1–10. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56402-0_30

    Chapter  Google Scholar 

  5. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009), New York, NY, USA, 4–6 January 2009, pp. 892–901 (2009)

    Google Scholar 

  6. Choi, H., Nakajima, K., Rim, C.S.: Graph bipartization and via minimization. SIAM J. Discrete Math. 2(1), 38–47 (1989)

    Article  MathSciNet  Google Scholar 

  7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1990)

    Article  MathSciNet  Google Scholar 

  8. Cornaz, D., Mahjoub, A.R.: The maximum induced bipartite subgraph problem with edge weights. SIAM J. Discrete Math. 21(3), 662–675 (2007)

    Article  MathSciNet  Google Scholar 

  9. Daniel Liang, Y., Chang, M.S.: Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs. Acta Informatica 34(5), 337–346 (1997)

    Article  MathSciNet  Google Scholar 

  10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)

    Book  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman, New York (2002)

    Google Scholar 

  12. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975)

    Article  MathSciNet  Google Scholar 

  13. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

    Article  MathSciNet  Google Scholar 

  14. Honma, H., Nakajima, Y., Sasaki, A.: An algorithm for the feedback vertex set problem on a normal helly circular-arc graph. J. Comput. Commun. 4(08), 23 (2016)

    Article  Google Scholar 

  15. Jana, S., Maheshwari, A., Mehrabi, S., Roy, S.: Maximum bipartite subgraph of geometric intersection graphs. CoRR abs/1909.03896 (2019)

    Google Scholar 

  16. Kratochvíl, J., Nešetřil, J.: Independent set and clique problems in intersection-defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae 31(1), 85–93 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on AT-free graphs. Discrete Appl. Math. 156(10), 1936–1947 (2008)

    Article  MathSciNet  Google Scholar 

  18. Lahiri, A., Mukherjee, J., Subramanian, C.R.: Maximum independent set on \(B_1\)-VPG graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp. 633–646. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8_46

    Chapter  Google Scholar 

  19. Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler parameterized algorithm for OCT. In: Combinatorial Algorithms, 20th International Workshop, IWOCA 2009, Hradec nad Moravicí, Czech Republic, 28 June–2 July 2009, Revised Selected Papers. pp. 380–384 (2009)

    Google Scholar 

  20. Lokshtanov, D., Saurabh, S., Wahlström, M.: Subexponential parameterized odd cycle transversal on planar graphs. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012, Hyderabad, India, 15–17 December 2012, pp. 424–434 (2012)

    Google Scholar 

  21. Lu, C.L., Tang, C.Y.: A linear-time algorithm for the weighted feedback vertex problem on interval graphs. Inf. Process. Lett. 61(2), 107–111 (1997)

    Article  MathSciNet  Google Scholar 

  22. Marx, D.: Efficient approximation schemes for geometric problems? In: 13th Annual European Symposium on Algorithms - ESA 2005, Palma de Mallorca, Spain, 3–6 October 2005, Proceedings, pp. 448–459 (2005)

    Google Scholar 

  23. Marx, D.: Parameterized complexity of independence and domination on geometric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 154–165. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250_14

    Chapter  MATH  Google Scholar 

  24. Matsui, T.: Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46515-7_16

    Chapter  MATH  Google Scholar 

  25. Nandy, S.C., Pandit, S., Roy, S.: Faster approximation for maximum independent set on unit disk graph. Inf. Process. Lett. 127, 58–61 (2017)

    Article  MathSciNet  Google Scholar 

  26. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MathSciNet  Google Scholar 

  27. Rim, C.S., Nakajima, K.: On rectangle intersection and overlap graphs. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 42(9), 549–553 (1995)

    Article  MathSciNet  Google Scholar 

  28. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, 1–3 May 1978, pp. 253–264 (1978)

    Google Scholar 

  29. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

We thank Michiel Smid for useful discussions on the problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mehrabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jana, S., Maheshwari, A., Mehrabi, S., Roy, S. (2020). Maximum Bipartite Subgraph of Geometric Intersection Graphs. In: Rahman, M., Sadakane, K., Sung, WK. (eds) WALCOM: Algorithms and Computation. WALCOM 2020. Lecture Notes in Computer Science(), vol 12049. Springer, Cham. https://doi.org/10.1007/978-3-030-39881-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39881-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39880-4

  • Online ISBN: 978-3-030-39881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics