Abstract
Fast implementation of Ring-LWE is a challenge for the low-end embedded processors. One of the most expensive operation for Ring-LWE is Number Theoretic Transform (NTT). Many works have investigated the optimized implementation for the NTT operation. In this paper, we further optimized the NTT operation on the low-end 8-bit AVR microcontrollers. We focused on the optimized and secure polynomial multiplication to ensure countermeasures against timing attacks and high performance. In particular, we propose the combined Look-Up Table (LUT) based fast reduction techniques in regular fashion. With the optimization techniques, the proposed NTT implementation enhances the performance by 14.6% than previous best results. Finally, proposed NTT implementations are applied to the Ring-LWE key scheduling and encryption operations, which require the only 1,325,171 and 1,430,601 clock cycles for 256-bit security levels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Two LUTs only require 1.5 KB (\(2^8 \times 2 + 2^9 \times 2\)) and the LUTs are stored in the FLASH memory. Considering that 8-bit AVR platforms support to write data into the FLASH memory and its size is ranging from 128–384 KB. The storage for LUTs is negligible on the target processors.
References
Boorghany, A., Sarmadi, S.B., Jalili, R.: On constrained implementation of lattice-based cryptographic primitives and schemes on smart cards. Cryptology ePrint Archive, Report 2014/514 (2014). https://eprint.iacr.org/2014/514.pdf
Alkim, E., et al.: Newhope. Technical Report, Technical report, National Institute of Standards and Technology (2017)
Boorghany, A., Jalili, R.: Implementation and Comparison of Lattice-based Identification Protocols on Smart Cards and Microcontrollers. Cryptology ePrint Archive, Report 2014/078 (2014)
Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367. IEEE (2018)
De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software implementation of ring-LWE encryption. In: 18th Design, Automation & Test in Europe Conference & Exhibition-DATE (2015)
Liu, Z., Huang, X., Hu, Z., Khan, M.K., Seo, H., Zhou, L.: On emerging family of elliptic curves to secure internet of things: ECC comes of age. IEEE Trans. Dependable Secure Comput. 14(3), 237–248 (2017)
Liu, Z., Longa, P., Pereira, G., Reparaz, O., Seo, H.: Fourq on embedded devices with strong countermeasures against side-channel attacks. Technical report, Cryptology ePrint Archive, Report 2017/434, 28, 29 (2017)
Liu, Z., et al.: High-performance ideal lattice-based cryptography on 8-bit AVR microcontrollers. ACM Trans. Embedded Comput. Syst. (TECS) 16(4), 117 (2017)
Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-compliant elliptic curve cryptography for sensor nodes. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 302–317. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02726-5_22
Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes. IEEE Trans. Inf. Forensics Secur. 11(7), 1385–1397 (2016)
Liu, Z., Seo, H., Hu, Z., Hunag, X., Großschädl, J.: Efficient implementation of ECDH key exchange for MSP430-based wireless sensor networks. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 145–153. ACM (2015)
Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient ring-LWE encryption on 8-Bit AVR processors. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_33
Liu, Z., Seo, H., Xu, Q.: Performance evaluation of twisted edwards-form elliptic curve cryptography for wireless sensor nodes. Secur. Commun. Netw. 8(18), 3301–3310 (2015)
Liu, Z., Weng, J., Hu, Z., Seo, H.: Efficient elliptic curve cryptography for embedded devices. ACM Trans. Embedded Comput. Syst. (TECS) 16(2), 53 (2016)
Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors Over Rings. Cryptology ePrint Archive, Report 2012/230 (2012)
Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: lattice-based digital signatures on constrained devices. In: 51st Annual Design Automation Conference-DAC (2014)
Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based cryptography on 8-Bit ATxmega microcontrollers. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_19
Qiu, L., Liu, Z., Pereira, G.C., Seo, H.: Implementing RSA for sensor nodes in smart cities. Pers. Ubiquit. Comput. 21(5), 807–813 (2017)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)
Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Compact and side channel secure discrete gaussian sampling (2014)
Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_21
Seo, H., Kim, H.: MoTE-ECC based encryption on MSP430. J. Inf. Commun. Converg. Eng. 15(3), 160–164 (2017)
Seo, H., Liu, Z., Großschädl, J., Kim, H.: Efficient arithmetic on ARM-NEON and its application for high-speed RSA implementation. Secur. Commun. Netw. 9(18), 5401–5411 (2016)
Seo, H., Liu, Z., Nogami, Y., Park, T., Choi, J., Zhou, L., Kim, H.: Faster ECC over \(\mathbb{F}_{2^{521}-1}\) (feat. NEON). In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 169–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_11
Seo, H., Liu, Z., Park, T., Kwon, H., Lee, S., Kim, H.: Secure number theoretic transform and speed record for ring-LWE encryption on embedded processors. In: Kim, H., Kim, D.-C. (eds.) ICISC 2017. LNCS, vol. 10779, pp. 175–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78556-1_10
Seo, H.: Faster (feat. ECC PMULL) over F2571. In: A Systems Approach to Cyber Security: Proceedings of the 2nd Singapore Cyber-Security R&D Conference (SG-CRC 2017), vol. 15, p. 97. IOS Press (2017)
Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134, November 1994
Acknowledgement
This work was supported as part of Military Crypto Research Center(UD170109ED) funded by Defense Acquisition Program Administration(DAPA) and Agency for Defense Development(ADD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Seo, H. et al. (2020). Ring-LWE on 8-Bit AVR Embedded Processor. In: You, I. (eds) Information Security Applications. WISA 2019. Lecture Notes in Computer Science(), vol 11897. Springer, Cham. https://doi.org/10.1007/978-3-030-39303-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-39303-8_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-39302-1
Online ISBN: 978-3-030-39303-8
eBook Packages: Computer ScienceComputer Science (R0)