Ring-LWE on 8-Bit AVR Embedded Processor | SpringerLink
Skip to main content

Ring-LWE on 8-Bit AVR Embedded Processor

  • Conference paper
  • First Online:
Information Security Applications (WISA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11897))

Included in the following conference series:

Abstract

Fast implementation of Ring-LWE is a challenge for the low-end embedded processors. One of the most expensive operation for Ring-LWE is Number Theoretic Transform (NTT). Many works have investigated the optimized implementation for the NTT operation. In this paper, we further optimized the NTT operation on the low-end 8-bit AVR microcontrollers. We focused on the optimized and secure polynomial multiplication to ensure countermeasures against timing attacks and high performance. In particular, we propose the combined Look-Up Table (LUT) based fast reduction techniques in regular fashion. With the optimization techniques, the proposed NTT implementation enhances the performance by 14.6% than previous best results. Finally, proposed NTT implementations are applied to the Ring-LWE key scheduling and encryption operations, which require the only 1,325,171 and 1,430,601 clock cycles for 256-bit security levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Two LUTs only require 1.5 KB (\(2^8 \times 2 + 2^9 \times 2\)) and the LUTs are stored in the FLASH memory. Considering that 8-bit AVR platforms support to write data into the FLASH memory and its size is ranging from 128–384 KB. The storage for LUTs is negligible on the target processors.

References

  1. Boorghany, A., Sarmadi, S.B., Jalili, R.: On constrained implementation of lattice-based cryptographic primitives and schemes on smart cards. Cryptology ePrint Archive, Report 2014/514 (2014). https://eprint.iacr.org/2014/514.pdf

  2. Alkim, E., et al.: Newhope. Technical Report, Technical report, National Institute of Standards and Technology (2017)

    Google Scholar 

  3. Boorghany, A., Jalili, R.: Implementation and Comparison of Lattice-based Identification Protocols on Smart Cards and Microcontrollers. Cryptology ePrint Archive, Report 2014/078 (2014)

    Google Scholar 

  4. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367. IEEE (2018)

    Google Scholar 

  5. De Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software implementation of ring-LWE encryption. In: 18th Design, Automation & Test in Europe Conference & Exhibition-DATE (2015)

    Google Scholar 

  6. Liu, Z., Huang, X., Hu, Z., Khan, M.K., Seo, H., Zhou, L.: On emerging family of elliptic curves to secure internet of things: ECC comes of age. IEEE Trans. Dependable Secure Comput. 14(3), 237–248 (2017)

    Google Scholar 

  7. Liu, Z., Longa, P., Pereira, G., Reparaz, O., Seo, H.: Fourq on embedded devices with strong countermeasures against side-channel attacks. Technical report, Cryptology ePrint Archive, Report 2017/434, 28, 29 (2017)

    Google Scholar 

  8. Liu, Z., et al.: High-performance ideal lattice-based cryptography on 8-bit AVR microcontrollers. ACM Trans. Embedded Comput. Syst. (TECS) 16(4), 117 (2017)

    Google Scholar 

  9. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-compliant elliptic curve cryptography for sensor nodes. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 302–317. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02726-5_22

    Chapter  Google Scholar 

  10. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes. IEEE Trans. Inf. Forensics Secur. 11(7), 1385–1397 (2016)

    Article  Google Scholar 

  11. Liu, Z., Seo, H., Hu, Z., Hunag, X., Großschädl, J.: Efficient implementation of ECDH key exchange for MSP430-based wireless sensor networks. In: Proceedings of the 10th ACM Symposium on Information, Computer and Communications Security, pp. 145–153. ACM (2015)

    Google Scholar 

  12. Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient ring-LWE encryption on 8-Bit AVR processors. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_33

    Chapter  Google Scholar 

  13. Liu, Z., Seo, H., Xu, Q.: Performance evaluation of twisted edwards-form elliptic curve cryptography for wireless sensor nodes. Secur. Commun. Netw. 8(18), 3301–3310 (2015)

    Article  Google Scholar 

  14. Liu, Z., Weng, J., Hu, Z., Seo, H.: Efficient elliptic curve cryptography for embedded devices. ACM Trans. Embedded Comput. Syst. (TECS) 16(2), 53 (2016)

    Google Scholar 

  15. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors Over Rings. Cryptology ePrint Archive, Report 2012/230 (2012)

    Google Scholar 

  16. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: lattice-based digital signatures on constrained devices. In: 51st Annual Design Automation Conference-DAC (2014)

    Google Scholar 

  17. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based cryptography on 8-Bit ATxmega microcontrollers. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_19

    Chapter  Google Scholar 

  18. Qiu, L., Liu, Z., Pereira, G.C., Seo, H.: Implementing RSA for sensor nodes in smart cities. Pers. Ubiquit. Comput. 21(5), 807–813 (2017)

    Article  Google Scholar 

  19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: 37th Annual ACM Symposium on Theory of Computing, pp. 84–93 (2005)

    Google Scholar 

  20. Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Compact and side channel secure discrete gaussian sampling (2014)

    Google Scholar 

  21. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Compact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_21

    Chapter  Google Scholar 

  22. Seo, H., Kim, H.: MoTE-ECC based encryption on MSP430. J. Inf. Commun. Converg. Eng. 15(3), 160–164 (2017)

    MathSciNet  Google Scholar 

  23. Seo, H., Liu, Z., Großschädl, J., Kim, H.: Efficient arithmetic on ARM-NEON and its application for high-speed RSA implementation. Secur. Commun. Netw. 9(18), 5401–5411 (2016)

    Article  Google Scholar 

  24. Seo, H., Liu, Z., Nogami, Y., Park, T., Choi, J., Zhou, L., Kim, H.: Faster ECC over \(\mathbb{F}_{2^{521}-1}\) (feat. NEON). In: Kwon, S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 169–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30840-1_11

    Chapter  Google Scholar 

  25. Seo, H., Liu, Z., Park, T., Kwon, H., Lee, S., Kim, H.: Secure number theoretic transform and speed record for ring-LWE encryption on embedded processors. In: Kim, H., Kim, D.-C. (eds.) ICISC 2017. LNCS, vol. 10779, pp. 175–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78556-1_10

    Chapter  Google Scholar 

  26. Seo, H.: Faster (feat. ECC PMULL) over F2571. In: A Systems Approach to Cyber Security: Proceedings of the 2nd Singapore Cyber-Security R&D Conference (SG-CRC 2017), vol. 15, p. 97. IOS Press (2017)

    Google Scholar 

  27. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134, November 1994

    Google Scholar 

Download references

Acknowledgement

This work was supported as part of Military Crypto Research Center(UD170109ED) funded by Defense Acquisition Program Administration(DAPA) and Agency for Defense Development(ADD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwajeong Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seo, H. et al. (2020). Ring-LWE on 8-Bit AVR Embedded Processor. In: You, I. (eds) Information Security Applications. WISA 2019. Lecture Notes in Computer Science(), vol 11897. Springer, Cham. https://doi.org/10.1007/978-3-030-39303-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39303-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39302-1

  • Online ISBN: 978-3-030-39303-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics