Final Sediment Outcome from Meteorological Flood Events: A Multi-modelling Approach | SpringerLink
Skip to main content

Final Sediment Outcome from Meteorological Flood Events: A Multi-modelling Approach

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

Coastal areas are more and more exposed to the effects of climatic change. Intense local rainfalls increases the frequency of flash floods and/or flow-like subaerial and afterward submarine landslides. The overall phenomenon of flash flood is complex and involves different phases strongly connected: heavy precipitations in a short period of time, soil erosion, fan deltas forming at mouth and hyperpycnal flows and/or landslides occurrence. Such interrelated phases were separately modelled for simulation purposes by different computational models: Partial Differential Equations methods for weather forecasts and sediment production estimation and Cellular Automata for soil erosion by rainfall and subaerial sediment transport and deposit. Our aim is to complete the model for the last phase of final sediment outcome. This research starts from the results of the previous models and introduces the processes concerning the demolition of fan deltas by sea waves during a sea-storm and the subsequent transport of and sediments in suspension by current at the sea-storm end and their deposition and eventual flowing on the sea bed. A first reduced implementation of the new model SCIDDICA-ss2/w&c1 was applied on the partial reconstruction of the 2016 Bagnara case regarding the meteorological conditions and the flattening of Sfalassà’s fan delta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pielke Sr., R.A.: Mesoscale Meteorological Modeling, 3rd edn. Academic Press, Boston (2013)

    Google Scholar 

  2. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  3. Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  4. Larosa, S., et al.: A PyQGIS plug-in for the sediments production calculation based on the Erosion Potential Method. In: Gao, W. (eds.) Frontiers of Earth Science (2019, Subm.). ISSN 2095-0195 (print version), ISSN 2095-0209 (el. version)

    Google Scholar 

  5. Avolio, M.V., Di Gregorio, S., Spataro, W., Trunfio, G.A.: A theorem about the algorithm of minimization of differences for multicomponent cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 289–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7_30

    Chapter  Google Scholar 

  6. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Futur. Gener. Comput. Syst. 16, 259–271 (1999)

    Article  Google Scholar 

  7. Calidonna, C.R., Di Gregorio, S., Mango Furnari, M.: Mapping applications of cellular automata into applications of cellular automata networks. Comput. Phys. Commun. 147, 724–728 (2002)

    Article  Google Scholar 

  8. Calidonna, C.R., Naddeo, A., Trunfio, G.A., Di Gregorio, S.: From classical infinite space-time CA to a hybrid CA model for natural sciences modeling. Appl. Math. Comput. 218, 8137–8150 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Calidonna, C.R., Di Napoli, C., Giordano, M., Mango Furnari, M., Di Gregorio, S.: A network of cellular automata for a landslide simulation. In: ICS 2001, pp. 419–426 (2001)

    Google Scholar 

  10. Mazzanti, P., Bozzano, F., Avolio, M.V., Lupiano, V., Di Gregorio, S.: 3D numerical modelling of submerged and coastal landslides propagation. In: Mosher, D.C., et al. (eds.) Submarine Mass Movements and Their Consequences. NTHR, vol. 28, pp. 127–139. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3071-9_11

    Chapter  Google Scholar 

  11. Avolio, M.V., Lupiano, V., Mazzanti, P., Di Gregorio, S.: An advanced cellular model for flow-type landslide with simulations of subaerial and subaqueous cases. In: Proceedings of the EnviroInfo 2009, vol. 501, pp. 131–140 (2009)

    Google Scholar 

  12. Maria, V.A., Francesca, B., Di Gregorio, S., Valeria, L., Paolo, M.: Simulation of submarine landslides by cellular automata methodology. In: Margottini, C., Canuti, P., Sassa, K. (eds.) Landslide Science and Practice, pp. 65–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31427-8_8

    Chapter  Google Scholar 

  13. Avolio, M.V., Di Gregorio, S., Lupiano, V., Mazzanti, P.: SCIDDICA-SS\(_3\): a new version of cellular automata model for simulating fast moving landslides. J. Supercomput. 65(2), 682–696 (2013). ISSN 0920-8542

    Article  Google Scholar 

  14. Salles, T., Lopez, S., Cacas, M.C., Mulder, T.: Cellular automata model of density currents. Geomorphology 88(1–2), 1–20 (2007)

    Article  Google Scholar 

  15. D’Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R.: A cellular automata model for soil erosion by water. Phys. Chem. Earth Part B 26(1), 33–39 (2001)

    Article  Google Scholar 

  16. Calidonna, C.R., De Pino, M., Di Gregorio, S., Gullace, F., Gullì, D., Lupiano, D.: A CA model for beach morphodynamics. In: AIP Conference Proceedings. Numerical Computations: Theory and Algorithms (NUMTA 2016), vol. 1776 (2016)

    Google Scholar 

  17. Arai, K., Basuki, A.: Simulation of hot mudflow disaster with cell automaton and verification with satellite imagery data. Int. Arch. Sci. Photogramm. Remote Sens. Spat. Inf. 38 Part 8, 237–242 (2010)

    Google Scholar 

  18. Vanwalleghem, T., Jiménez-Hornero, F., Giráldez, J.V., Laguna, A.M.: Simulation of long-term soil redistribution by tillage using a cellular automata model. Earth Surf. Process. Landf. 35, 761–770 (2010)

    Google Scholar 

  19. Valette, G., Prévost, S., Laurent, L., Léonard, J.: SoDA project: a simulation of soil surface degradation by rainfall. Comput. Graph. 30, 494–506 (2006)

    Article  Google Scholar 

  20. Punzo, M., et al.: Remocean X-band wave radar for wave field analysis: case study of Bagnara Calabra (South Tyrrhenian Sea, Italy). J. Sens. 1, 131–140. Application of X-BandWave Radar for Coastal Dynamic Analysis: Case Test of Bagnara Calabra (South Tyrrhenian Sea, IT) 501, 9 (2016). Article ID: 6236925

    Google Scholar 

  21. Gullace, F.: Un tentativo di Modellizzazione della Morfodinamica degli Arenili con Automi Cellulari. Master theses in Physics, Department Physics, University of Calabria, aa 2015/16 (2016)

    Google Scholar 

  22. Dominici R.: Personal communication (2019)

    Google Scholar 

  23. Avolio, E., Federico, S.: WRF simulations for a heavy rainfall event in southern Italy: verification and sensitivity tests. Atmos. Res. 209, 14–35 (2018)

    Article  Google Scholar 

  24. Auddino, M., Dominici, R., Viscomi, A.: Evaluation of yield sediment in the Sfalassà Fiumara (south western, Calabria) by using Gavrilovi method in GIS enviroment. Rendiconti online della Soc. Geol. Ita. 33, 3–7 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia R. Calidonna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lupiano, V. et al. (2020). Final Sediment Outcome from Meteorological Flood Events: A Multi-modelling Approach. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics