Discrete Time Sliding Mode Control of Milling Chatter | SpringerLink
Skip to main content

Discrete Time Sliding Mode Control of Milling Chatter

  • Conference paper
  • First Online:
Advanced Computational Methods for Knowledge Engineering (ICCSAMA 2019)

Abstract

The technique of mitigating chatter phenomenon in an effective manner is an important issue from the viewpoint of superior quality machining process with quality production. In this paper, an innovative solution to control chatter vibration actively in the milling process is presented. The mathematical modelling associated with the milling technique is presented in the primary phase of the paper. In this paper, an innovative technique of discrete time sliding mode control (DSMC) is blended with Type 2 fuzzy logic system. Superior mitigation of chatter is the outcome of developed active controller. The Lyapunov scheme is implemented to validate the stability criteria of the proposed controller. The embedded nonlinearity in the cutting forces and damper friction are compensated in an effective manner by the utilization of Type-2 fuzzy technique. The vibration attenuation ability of DSMC-Type-2 fuzzy (DSMC-T2) is compared with the Discrete time PID (D-PID) and DSMC-Type-1 fuzzy (DSMC-T1) for validating the effectiveness of the controller. Finally, the numerical analysis is carried out to validate that DSMC-T2 is superior to D-PID and DSMC-T1 in the minimization of the milling chatter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rusinek, R., Wiercigroch, M., Wahi, P.: Modelling of frictional chatter in metal cutting. Int. J. Mech. Sci. 89, 167–176 (2014)

    Article  Google Scholar 

  2. Parus, A., Powalka, B., Marchelek, K., Domek, S., Hoffmann, M.: Active vibration control in milling flexible workpiece. J. Vib. Control 19, 1103–1120 (2013)

    Article  Google Scholar 

  3. Quintana, G., Ciurana, J.: Chatter in machining processes: a review. Int. J. Mach. Tools Manuf. 51, 363–376 (2011)

    Article  Google Scholar 

  4. Harms, A., Denkena, B., Lhermet, N.: Tool Adaptor for Active Vibration Control in Turning Operation. In: 9th International Conference on New Actuators, Bremen, Germany, pp. 694–697 (2004)

    Google Scholar 

  5. Chen, Z., Zhang, H.-T., Zhang, X., Ding, H.: Adaptive active chatter control in milling processes. J. Dyn. Syst. Meas. Control 136(2), 0210007 (2014)

    Article  Google Scholar 

  6. Weremczuk, A., Rusinek, R., Warminski, J.: The concept of active elimination of vibrations in milling process. Procedia CIRP 31, 82–87 (2015)

    Article  Google Scholar 

  7. AlharbiI, W.N., Batako, A., Gomm, B.: PID controller design for viibratory milling. In: Proceedings of ISER International Conference, Marrkech, Morocco (2017)

    Google Scholar 

  8. Melkote, S.N., Endres, W.J.: The importance of including size effect when modeling slot milling. J. Manuf. Sci. Eng. 120(1), 68–75 (1998)

    Article  Google Scholar 

  9. Moradi, H., Bakhtiari-Nejad, F., Movahhedy, M.R., Vossoughi, G.R.: Stability improvement and regenerative chatter suppression in nonlinear milling process via tunable vibration absorber. J. Sound Vib. 331, 4668–4690 (2012)

    Article  Google Scholar 

  10. Liang, M., Yeap, T., Hermansya, A.: A fuzzy system for chatter suppression in end milling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 218(4), 403–417 (2004)

    Article  Google Scholar 

  11. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall PTR, Upper Saddle River (2001)

    MATH  Google Scholar 

  12. Paul, S., Yu, W., Li, X.: Bidirectional active control of structures with type-2 fuzzy PD and PID. Int. J. Syst. Sci. 49(4), 766–782 (2018)

    Article  MathSciNet  Google Scholar 

  13. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    Book  Google Scholar 

  14. Paul, S., Yu, W., Li, X.: Discrete-time sliding mode for building structure bidirectional active vibration control. Trans. Inst. Meas. Control 41(2), 433–446 (2019)

    Article  Google Scholar 

  15. Moradi, H., Movahhedy, M.R., Vossoughi, G.: Sliding mode control of machining chatter in the presence of tool wear and parametric uncertainties. J. Vib. Control 16(2), 231–251 (2009)

    Article  Google Scholar 

  16. Ma, H., Wu, J., Yang, L., Xiong, Z.: Active chatter suppression with displacement-only measurement in turning process. J. Sound Vib. 401, 255–267 (2017)

    Article  Google Scholar 

  17. Sarpturk, S.Z., Istefanopolos, Y., Kaynak, O.R.: On the stability of discrete-time sliding mode control systems. IEEE Trans. Autom. Control 32(10), 930–932 (1987)

    Article  Google Scholar 

  18. Bartoszewicz, A.: Discrete-time quasi-sliding mode control strategies. IEEE Trans. Industr. Electron. 45(4), 633–637 (1998)

    Article  Google Scholar 

  19. Zhang, H.-T., Wu, Y., He, D., Zhao, H.: Model predictive control to mitigate chatters in milling processes with input constraints. Int. J. Mach. Tools Manuf. 91, 54–61 (2015)

    Article  Google Scholar 

  20. Altintas, Y., Stepan, G., Merdol, D., Dombovari, Z.: Chatter stability of milling in frequency and discrete time domain. CIRP J. Manuf. Sci. Technol. 1(1), 35–44 (2008)

    Article  Google Scholar 

  21. Roldán, C., Campa, F.J., Altuzarra, O., Amezua, E.: Automatic identification of the inertia and friction of an electromechanical actuator. In: New Advances in Mechanisms, Transmissions and Applications. Mechanisms and Machine Science, vol. 17, pp. 409–416 (2014)

    Google Scholar 

  22. Kim, J., Oh, S., Cho, D., Hedrick, J.: Robust discrete-time variable structure control methods. ASME. J. Dyn. Sys. Meas. Control 122(4), 766–775 (2000)

    Article  Google Scholar 

  23. Moradi, H., Movahhedy, M.R., Vossoughi, G.: Dynamics of regenerative chatter and internal resonance in milling process with structural and cutting force nonlinearities. J. Sound Vib. 331(16), 3844–3865 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is carried out within the projects: - Production Centred Maintenance (PCM) for real time predictive maintenance decision support to maximise production efficiency, funded by the Swedish Knowledge Foundation (Stiftelsen för kunskaps- och kompetensutveckling), and - A digital twin to support sustainable and available production as a service (DT-SAPS), funded by Produktion2030, the Strategic innovation programme for sustainable production in Sweden. We gratefully acknowledge the support and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, S., Löfstrand, M. (2020). Discrete Time Sliding Mode Control of Milling Chatter. In: Le Thi, H., Le, H., Pham Dinh, T., Nguyen, N. (eds) Advanced Computational Methods for Knowledge Engineering. ICCSAMA 2019. Advances in Intelligent Systems and Computing, vol 1121. Springer, Cham. https://doi.org/10.1007/978-3-030-38364-0_34

Download citation

Publish with us

Policies and ethics