Abstract
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multiphase flows with accuracy and proper interphase management. The implementation was performed in the DualSPHysics code, and validated for different canonical experiments, such as the single-phase and multiphase Poiseuille and Couette test cases. The method is accurate even for the multiphase case for which two phases are simulated. The shifting algorithm and the variable smoothing length formalism has been applied in the multiphase SPH model to improve the numerical results at the interphase even when it is highly deformed and non-linear effects become important. The obtained accuracy in the validation tests and the good interphase definition in the instability cases, indicate an important improvement in the numerical results compared with single-phase and multiphase models where the shifting algorithm and the variable smoothing length formalism are not applied.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)
Bonet, J., Lok, T.S.L.: Variational and momentum preservation aspects of SPH formulations. Comput. Methods Appl. Mech. Eng. 180, 97–115 (1999)
Tartakovsky, A., Meakin, P.: Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv. Water Resour. 29, 1464–1478 (2006)
Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astr. 30, 543–574 (1992)
Crespo, A.J.C., et al.: DualSPHysics: open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Comm. 187, 204–216 (2015)
Dominguez, J.M., Crespo, A.J.C., Gómez-Gesteira, M.: Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput. Phys. Comm. 184(3), 617–627 (2013)
Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)
Liu, G.R.: Mesh Free Methods: Moving beyond the Finite Element Method, p. 692. CRC Press (2003)
Gómez-Gesteira, M., Rogers, B.D., Dalrymple, R.A., Crespo, A.J.C.: State of the art of classical SPH for free-surface flows. J. Hydrau. Res. 48, 6–27 (2010). https://doi.org/10.3826/jhr.2010.0012
Gómez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Domínguez, J.M.: SPHysics—development of a free-surface fluid solver-Part 1: theory and formulations. Comput. Geosci. 48, 289–299 (2012)
Natanson, I.P.: Theory of Functions of a Real Variable. New York Ungar (1960)
Monaghan, J.J., Kocharyan, A.: SPH simulation of multi-phase flow. Comput. Phys. Commun. 87, 225–235 (1995)
Wendland, H.: Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)
Lo, E.Y.M., Shao, S.: Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl. Ocean Res. 24, 275–286 (2002)
Gotoh, H., Shibihara, T., Hayashii, M.: Subparticle-scale model for the mps method-Lagrangian flow model for hydraulic engineering. Comput. Fluid Dyn. J. 9, 339–347 (2001)
Dalrymple, R.A., Rogers, B.D.: Numerical modeling of water waves with the SPH method. Coast. Eng. 53, 141–147 (2006)
Monaghan, J.J., Kos, A.: Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng. 125, 145–154 (1999)
Sigalotti, L.D.G., Troconis, J., Sira, E., Peña-Polo, F., Klapp, J.: Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics. Phys. Rev. E 90, 013021 (2014)
Hoover, W.G.: Isomorphism linking smooth particles and embedded atoms. Phys. A 260, 244 (1998)
Xu, R., Stansby, P.K., Laurence, D.: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228, 6703–6725 (2009)
Sigalotti, L.D.G., López, H., Donoso, A., Sira, E., Klapp, J.: A shock-capturing SPH scheme based on adaptive kernel estimation. J. Comput. Phys. 212, 124–149 (2006)
Sigalotti, L.D.G., López, H.: Adaptive kernel estimation and SPH tensile instability. Comput. Math Appl. 55, 23–50 (2008)
Domínguez, J.M., Crespo, A.J.C., Gómez-Gesteira, M.: Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput. Phys. Commun. 184(3), 617–627 (2013)
Mokos, A., Rogers, B.D., Stansby, P.K., Domínguez, J.M.: Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput. Phys. Commun. 196, 304–316 (2015). https://doi.org/10.1016/j.cpc.2015.06.020
Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)
Sigalotti, L.D.G., Klapp, J., Sira, E., Meleán, Y., Hasmy, A.: SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers. J. Comput. Phys. 191, 622–638 (2003)
Holmes, D.W., Williams, J.R., Tilke, P.: Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int. J. Numer. Anal. Meth. Geomech. 35, 419–437 (2011)
Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Fenómenos de transporte, 2nd edn. Editorial Limusa Wiley (2006)
Cengel, Y.A., Cimbala, J.M.: Mecánica de fluidos: fundamentos y aplicaciones, 1 edn. McGraw-Hill (2006)
Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152, 584–607 (1999)
Chen, Z., Zong, Z., Liu, M.B., Zou, L., Li, H.T., Shu, C.: An SPH model for multiphase flows with complex interfaces and large density differences. J. Comput. Phys. 283, 169–188 (2015)
Crespo, A.J.C., Gómez-Gesteira, M., Dalrymple, R.A.: Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Continua 5, 173–184 (2007)
Price, D.J.: Modelling discontinuities and Kelvin-Helmholts instabilities in SPH. J. Comput. Phys. 227, 10040–10057 (2008)
Agertz, O., et al.: Fundamental differences between SPH and grid methods. MNRAS 380, 963–978 (2007)
Hanafizadeh, P., Ghanbarzadeh, S., Saidi, M.H.: Visual technique for detection of gas–liquid two-phase flow regime in the airlift pump. J. Pet. Sci. Eng. 75, 327–335 (2011)
Sotgia, G., Tartarini, P., Stalio, E.: Experimental analysis of flow regimes and pressure drop reduction in oil–water mixtures. Int. J. Multiph. Flow 34, 1161–1174 (2008)
Edomwonyi-Out, L.C., Angeli, P.: Pressure drop and holdup predictions inhorizontal oil–water flows for curved and wavy interfaces. J. Chem. Eng. Res. Des. 93, 55–65 (2014)
Acknowledgment
The authors thank the financial support by the Mexican CONACyT, as well as ABACUS: Laboratory of Applied Mathematics and High-Performance Computing of the Mathematics Department of CINVESTAV-IPN. Our institution provided the facilities to accomplish this work. The research leading to these results has received collaboration from the European Union’s Horizon 2020 Programme under the ENERXICO Project, grant agreement no 828947 and under the Mexican CONACYT-SENER-Hidrocarburos grant agreement B-S-69926.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Alvarado-Rodríguez, C.E., Klapp, J., Domínguez, J.M., Uribe-Ramírez, A.R., Ramírez-Minguela, J.J., Gómez-Gesteira, M. (2019). Multiphase Flows Simulation with the Smoothed Particle Hydrodynamics Method. In: Torres, M., Klapp, J. (eds) Supercomputing. ISUM 2019. Communications in Computer and Information Science, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-38043-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-38043-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38042-7
Online ISBN: 978-3-030-38043-4
eBook Packages: Computer ScienceComputer Science (R0)