Multiphase Flows Simulation with the Smoothed Particle Hydrodynamics Method | SpringerLink
Skip to main content

Multiphase Flows Simulation with the Smoothed Particle Hydrodynamics Method

  • Conference paper
  • First Online:
Supercomputing (ISUM 2019)

Abstract

This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multiphase flows with accuracy and proper interphase management. The implementation was performed in the DualSPHysics code, and validated for different canonical experiments, such as the single-phase and multiphase Poiseuille and Couette test cases. The method is accurate even for the multiphase case for which two phases are simulated. The shifting algorithm and the variable smoothing length formalism has been applied in the multiphase SPH model to improve the numerical results at the interphase even when it is highly deformed and non-linear effects become important. The obtained accuracy in the validation tests and the good interphase definition in the instability cases, indicate an important improvement in the numerical results compared with single-phase and multiphase models where the shifting algorithm and the variable smoothing length formalism are not applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)

    Article  Google Scholar 

  2. Bonet, J., Lok, T.S.L.: Variational and momentum preservation aspects of SPH formulations. Comput. Methods Appl. Mech. Eng. 180, 97–115 (1999)

    Article  Google Scholar 

  3. Tartakovsky, A., Meakin, P.: Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv. Water Resour. 29, 1464–1478 (2006)

    Article  Google Scholar 

  4. Monaghan, J.J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Astr. 30, 543–574 (1992)

    Article  Google Scholar 

  5. Crespo, A.J.C., et al.: DualSPHysics: open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput. Phys. Comm. 187, 204–216 (2015)

    Article  Google Scholar 

  6. Dominguez, J.M., Crespo, A.J.C., Gómez-Gesteira, M.: Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput. Phys. Comm. 184(3), 617–627 (2013)

    Article  Google Scholar 

  7. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  8. Liu, G.R.: Mesh Free Methods: Moving beyond the Finite Element Method, p. 692. CRC Press (2003)

    Google Scholar 

  9. Gómez-Gesteira, M., Rogers, B.D., Dalrymple, R.A., Crespo, A.J.C.: State of the art of classical SPH for free-surface flows. J. Hydrau. Res. 48, 6–27 (2010). https://doi.org/10.3826/jhr.2010.0012

    Article  Google Scholar 

  10. Gómez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Domínguez, J.M.: SPHysics—development of a free-surface fluid solver-Part 1: theory and formulations. Comput. Geosci. 48, 289–299 (2012)

    Article  Google Scholar 

  11. Natanson, I.P.: Theory of Functions of a Real Variable. New York Ungar (1960)

    Google Scholar 

  12. Monaghan, J.J., Kocharyan, A.: SPH simulation of multi-phase flow. Comput. Phys. Commun. 87, 225–235 (1995)

    Article  Google Scholar 

  13. Wendland, H.: Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  Google Scholar 

  14. Lo, E.Y.M., Shao, S.: Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl. Ocean Res. 24, 275–286 (2002)

    Article  Google Scholar 

  15. Gotoh, H., Shibihara, T., Hayashii, M.: Subparticle-scale model for the mps method-Lagrangian flow model for hydraulic engineering. Comput. Fluid Dyn. J. 9, 339–347 (2001)

    Google Scholar 

  16. Dalrymple, R.A., Rogers, B.D.: Numerical modeling of water waves with the SPH method. Coast. Eng. 53, 141–147 (2006)

    Article  Google Scholar 

  17. Monaghan, J.J., Kos, A.: Solitary waves on a Cretan beach. J. Waterw. Port Coast. Ocean Eng. 125, 145–154 (1999)

    Article  Google Scholar 

  18. Sigalotti, L.D.G., Troconis, J., Sira, E., Peña-Polo, F., Klapp, J.: Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics. Phys. Rev. E 90, 013021 (2014)

    Article  Google Scholar 

  19. Hoover, W.G.: Isomorphism linking smooth particles and embedded atoms. Phys. A 260, 244 (1998)

    Article  Google Scholar 

  20. Xu, R., Stansby, P.K., Laurence, D.: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228, 6703–6725 (2009)

    Article  MathSciNet  Google Scholar 

  21. Sigalotti, L.D.G., López, H., Donoso, A., Sira, E., Klapp, J.: A shock-capturing SPH scheme based on adaptive kernel estimation. J. Comput. Phys. 212, 124–149 (2006)

    Article  MathSciNet  Google Scholar 

  22. Sigalotti, L.D.G., López, H.: Adaptive kernel estimation and SPH tensile instability. Comput. Math Appl. 55, 23–50 (2008)

    Article  MathSciNet  Google Scholar 

  23. Domínguez, J.M., Crespo, A.J.C., Gómez-Gesteira, M.: Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput. Phys. Commun. 184(3), 617–627 (2013)

    Article  Google Scholar 

  24. Mokos, A., Rogers, B.D., Stansby, P.K., Domínguez, J.M.: Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput. Phys. Commun. 196, 304–316 (2015). https://doi.org/10.1016/j.cpc.2015.06.020

    Article  Google Scholar 

  25. Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low Reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)

    Article  Google Scholar 

  26. Sigalotti, L.D.G., Klapp, J., Sira, E., Meleán, Y., Hasmy, A.: SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers. J. Comput. Phys. 191, 622–638 (2003)

    Article  Google Scholar 

  27. Holmes, D.W., Williams, J.R., Tilke, P.: Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int. J. Numer. Anal. Meth. Geomech. 35, 419–437 (2011)

    Article  Google Scholar 

  28. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Fenómenos de transporte, 2nd edn. Editorial Limusa Wiley (2006)

    Google Scholar 

  29. Cengel, Y.A., Cimbala, J.M.: Mecánica de fluidos: fundamentos y aplicaciones, 1 edn. McGraw-Hill (2006)

    Google Scholar 

  30. Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152, 584–607 (1999)

    Article  MathSciNet  Google Scholar 

  31. Chen, Z., Zong, Z., Liu, M.B., Zou, L., Li, H.T., Shu, C.: An SPH model for multiphase flows with complex interfaces and large density differences. J. Comput. Phys. 283, 169–188 (2015)

    Article  MathSciNet  Google Scholar 

  32. Crespo, A.J.C., Gómez-Gesteira, M., Dalrymple, R.A.: Boundary conditions generated by dynamic particles in SPH methods. Comput. Mater. Continua 5, 173–184 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Price, D.J.: Modelling discontinuities and Kelvin-Helmholts instabilities in SPH. J. Comput. Phys. 227, 10040–10057 (2008)

    Article  MathSciNet  Google Scholar 

  34. Agertz, O., et al.: Fundamental differences between SPH and grid methods. MNRAS 380, 963–978 (2007)

    Article  Google Scholar 

  35. Hanafizadeh, P., Ghanbarzadeh, S., Saidi, M.H.: Visual technique for detection of gas–liquid two-phase flow regime in the airlift pump. J. Pet. Sci. Eng. 75, 327–335 (2011)

    Article  Google Scholar 

  36. Sotgia, G., Tartarini, P., Stalio, E.: Experimental analysis of flow regimes and pressure drop reduction in oil–water mixtures. Int. J. Multiph. Flow 34, 1161–1174 (2008)

    Article  Google Scholar 

  37. Edomwonyi-Out, L.C., Angeli, P.: Pressure drop and holdup predictions inhorizontal oil–water flows for curved and wavy interfaces. J. Chem. Eng. Res. Des. 93, 55–65 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the financial support by the Mexican CONACyT, as well as ABACUS: Laboratory of Applied Mathematics and High-Performance Computing of the Mathematics Department of CINVESTAV-IPN. Our institution provided the facilities to accomplish this work. The research leading to these results has received collaboration from the European Union’s Horizon 2020 Programme under the ENERXICO Project, grant agreement no 828947 and under the Mexican CONACYT-SENER-Hidrocarburos grant agreement B-S-69926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Alvarado-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarado-Rodríguez, C.E., Klapp, J., Domínguez, J.M., Uribe-Ramírez, A.R., Ramírez-Minguela, J.J., Gómez-Gesteira, M. (2019). Multiphase Flows Simulation with the Smoothed Particle Hydrodynamics Method. In: Torres, M., Klapp, J. (eds) Supercomputing. ISUM 2019. Communications in Computer and Information Science, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-38043-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38043-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38042-7

  • Online ISBN: 978-3-030-38043-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics