Unsupervised Video Summarization via Attention-Driven Adversarial Learning | SpringerLink
Skip to main content

Unsupervised Video Summarization via Attention-Driven Adversarial Learning

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11961))

Included in the following conference series:

Abstract

This paper presents a new video summarization approach that integrates an attention mechanism to identify the significant parts of the video, and is trained unsupervisingly via generative adversarial learning. Starting from the SUM-GAN model, we first develop an improved version of it (called SUM-GAN-sl) that has a significantly reduced number of learned parameters, performs incremental training of the model’s components, and applies a stepwise label-based strategy for updating the adversarial part. Subsequently, we introduce an attention mechanism to SUM-GAN-sl in two ways: (i) by integrating an attention layer within the variational auto-encoder (VAE) of the architecture (SUM-GAN-VAAE), and (ii) by replacing the VAE with a deterministic attention auto-encoder (SUM-GAN-AAE). Experimental evaluation on two datasets (SumMe and TVSum) documents the contribution of the attention auto-encoder to faster and more stable training of the model, resulting in a significant performance improvement with respect to the original model and demonstrating the competitiveness of the proposed SUM-GAN-AAE against the state of the art (Software publicly available at: https://github.com/e-apostolidis/SUM-GAN-AAE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Importance scores were defined based on a uniform distribution of probabilities and the experiment was repeated 100 times.

References

  1. Apostolidis, E., et al.: A stepwise, label-based approach for improving the adversarial training in unsupervised video summarization. In: AI4TV, ACM MM 2019 (2019)

    Google Scholar 

  2. Apostolidis, E., et al.: Fast shot segmentation combining global and local visual descriptors. In: IEEE ICASSP 2014, pp. 6583–6587 (2014)

    Google Scholar 

  3. Apostolidis, K., Apostolidis, E., Mezaris, V.: A motion-driven approach for fine-grained temporal segmentation of user-generated videos. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10704, pp. 29–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73603-7_3

    Chapter  Google Scholar 

  4. Bahuleyan, H., et al.: Variational attention for sequence-to-sequence models. In: 27th COLING, pp. 1672–1682 (2018)

    Google Scholar 

  5. Cho, J.: PyTorch implementation of SUM-GAN (2017). https://github.com/j-min/Adversarial_Video_Summary. Accessed 18 Oct 2019

  6. Elfeki, M., et al.: Video summarization via actionness ranking. In: IEEE WACV 2019, pp. 754–763 (2019)

    Google Scholar 

  7. Fajtl, J., Sokeh, H.S., Argyriou, V., Monekosso, D., Remagnino, P.: Summarizing videos with attention. In: Carneiro, G., You, S. (eds.) ACCV 2018. LNCS, vol. 11367, pp. 39–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21074-8_4

    Chapter  Google Scholar 

  8. Feng, L., et al.: Extractive video summarizer with memory augmented neural networks. In: ACM MM 2018, pp. 976–983 (2018)

    Google Scholar 

  9. Fu, T., et al.: Attentive and adversarial learning for video summarization. In: IEEE WACV 2019, pp. 1579–1587 (2019)

    Google Scholar 

  10. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 505–520. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_33

    Chapter  Google Scholar 

  11. Gygli, M., et al.: Video summarization by learning submodular mixtures of objectives. In: IEEE CVPR 2015, pp. 3090–3098 (2015)

    Google Scholar 

  12. Hochreiter, S., et al.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  13. Ji, Z., et al.: Video summarization with attention-based encoder-decoder networks. IEEE Trans. Circ. Syst. Video Technol. 1 (2019)

    Google Scholar 

  14. Kaufman, D., et al.: Temporal tessellation: a unified approach for video analysis. In: IEEE ICCV 2017, pp. 94–104 (2017)

    Google Scholar 

  15. Lee, S., et al.: A memory network approach for story-based temporal summarization of 360 videos. In: IEEE CVPR 2018, pp. 1410–1419 (2018)

    Google Scholar 

  16. Mahasseni, B., et al.: Unsupervised video summarization with adversarial LSTM networks. In: IEEE CVPR 2017, pp. 2982–2991 (2017)

    Google Scholar 

  17. Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J., Yokoya, N.: Video summarization using deep semantic features. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 361–377. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_23

    Chapter  Google Scholar 

  18. Potapov, D., Douze, M., Harchaoui, Z., Schmid, C.: Category-specific video summarization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 540–555. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_35

    Chapter  Google Scholar 

  19. Radford, A., et al.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR 2016 (2016)

    Google Scholar 

  20. Rochan, M., et al.: Video summarization by learning from unpaired data. In: IEEE CVPR 2019 (2019)

    Google Scholar 

  21. Rochan, M., Ye, L., Wang, Y.: Video summarization using fully convolutional sequence networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 358–374. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_22

    Chapter  Google Scholar 

  22. Song, Y., et al.: TVSum: summarizing web videos using titles. In: IEEE CVPR 2015, pp. 5179–5187 (2015)

    Google Scholar 

  23. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE CVPR 2015, pp. 1–9 (2015)

    Google Scholar 

  24. Wei, H., et al.: Video summarization via semantic attended networks. In: AAAI 2018, pp. 216–223 (2018)

    Google Scholar 

  25. Yuan, L., et al.: Cycle-SUM: cycle-consistent adversarial LSTM networks for unsupervised video summarization. In: AAAI 2019, pp. 9143–9150 (2019)

    Article  Google Scholar 

  26. Yuan, Y., et al.: Video summarization by learning deep side semantic embedding. IEEE Trans. Circ. Syst. Video Technol. 29(1), 226–237 (2019)

    Article  Google Scholar 

  27. Zhang, K., Chao, W.-L., Sha, F., Grauman, K.: Video summarization with long short-term memory. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_47

    Chapter  Google Scholar 

  28. Zhang, Y., et al.: DTR-GAN: dilated temporal relational adversarial network for video summarization. In: ACM TURC 2019, pp. 89:1–89:6 (2019)

    Google Scholar 

  29. Zhang, Y., et al.: Unsupervised object-level video summarization with online motion auto-encoder. Pattern Recogn. Lett. (2018)

    Google Scholar 

  30. Zhao, B., et al.: Hierarchical recurrent neural network for video summarization. In: ACM MM 2017, pp. 863–871 (2017)

    Google Scholar 

  31. Zhao, B., et al.: HSA-RNN: hierarchical structure-adaptive RNN for video summarization. In: IEEE/CVF CVPR 2018, pp. 7405–7414 (2018)

    Google Scholar 

  32. Zhou, K., et al.: Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. In: AAAI 2018, pp. 7582–7589 (2018)

    Google Scholar 

  33. Zhou, K., et al.: Video summarisation by classification with deep reinforcement learning. In: BMVC 2018 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the EUs Horizon 2020 research and innovation programme under grant agreement H2020-780656 ReTV. The work of Ioannis Patras has been supported by EPSRC under grant No. EP/R026424/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Mezaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I. (2020). Unsupervised Video Summarization via Attention-Driven Adversarial Learning. In: Ro, Y., et al. MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science(), vol 11961. Springer, Cham. https://doi.org/10.1007/978-3-030-37731-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37731-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37730-4

  • Online ISBN: 978-3-030-37731-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics