Predictive Process Monitoring in Operational Logistics: A Case Study in Aviation | SpringerLink
Skip to main content

Predictive Process Monitoring in Operational Logistics: A Case Study in Aviation

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2019)

Abstract

The research area of process mining concerns itself with knowledge discovery from event logs, containing recorded traces of executions as stored by process aware information systems. Over the past decade, research in process mining has increasingly focused on predictive process monitoring to provide businesses with valuable information in order to identify violations, deviance and delays within a process execution, enabling them to carry out preventive measures. In this paper, we describe a practical case in which both exploratory and predictive process monitoring techniques were developed to understand and predict completion times of a luggage handling process at an airport. From a scientific perspective, our main contribution relates to combining a random forest regression model and a Long Short-Term Memory (LSTM) model into a novel stacked prediction model, in order to accurately predict completion time of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  2. Van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  4. Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_5

    Chapter  Google Scholar 

  5. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_8

    Chapter  Google Scholar 

  6. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede, A.H.: A recommendation system for predicting risks across multiple business process instances. Decis. Support. Syst. 69, 1–19 (2015)

    Article  Google Scholar 

  7. Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27

    Chapter  Google Scholar 

  8. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88871-0_22

    Chapter  Google Scholar 

  9. Dozat, T.: Incorporating nesterov momentum into adam. Technical report, Stanford University (2016). http://cs229.stanford.edu/proj2015/054_report.pdf

  10. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19

    Chapter  Google Scholar 

  11. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support. Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  12. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18

    Chapter  Google Scholar 

  13. Folino, F., Guarascio, M., Pontieri, L.: Discovering high-level performance models for ticket resolution processes. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 275–282. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_18

    Chapter  Google Scholar 

  14. Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: what’s next in business intelligence? In: Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, pp. 1–6. ACM (2004)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Jolliffe, I.T.: Uncertainty and inference for verification measures. Weather Forecast. 22(3), 637–650 (2007)

    Article  Google Scholar 

  17. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Runtime prediction of service level agreement violations for composite services. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave -2009. LNCS, vol. 6275, pp. 176–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16132-2_17

    Chapter  Google Scholar 

  18. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)

  19. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A., Toro, M.: Run-time prediction of business process indicators using evolutionary decision rules. Expert. Syst. Appl. 87, 1–14 (2017)

    Article  Google Scholar 

  20. Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware remaining time prediction of business process instances. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)

    Google Scholar 

  21. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 816–823. IEEE (2014)

    Google Scholar 

  22. Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018)

    Article  MathSciNet  Google Scholar 

  23. Reijers, H.A.: Case prediction in BPM systems: a research challenge. J. Korean Inst. Ind. Eng. 33(1), 1–10 (2007)

    Google Scholar 

  24. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  25. Tu, T.B.H., Song, M.: Analysis and prediction cost of manufacturing process based on process mining. In: 2016 International Conference on Industrial Engineering, Management Science and Application (ICIMSA), pp. 1–5. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Björn Rafn Gunnarsson , Seppe K. L. M. vanden Broucke or Jochen De Weerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunnarsson, B.R., vanden Broucke, S.K.L.M., De Weerdt, J. (2019). Predictive Process Monitoring in Operational Logistics: A Case Study in Aviation. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds) Business Process Management Workshops. BPM 2019. Lecture Notes in Business Information Processing, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-37453-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37453-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37452-5

  • Online ISBN: 978-3-030-37453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics