Abstract
The research area of process mining concerns itself with knowledge discovery from event logs, containing recorded traces of executions as stored by process aware information systems. Over the past decade, research in process mining has increasingly focused on predictive process monitoring to provide businesses with valuable information in order to identify violations, deviance and delays within a process execution, enabling them to carry out preventive measures. In this paper, we describe a practical case in which both exploratory and predictive process monitoring techniques were developed to understand and predict completion times of a luggage handling process at an airport. From a scientific perspective, our main contribution relates to combining a random forest regression model and a Long Short-Term Memory (LSTM) model into a novel stacked prediction model, in order to accurately predict completion time of cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)
Van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Ceci, M., Lanotte, P.F., Fumarola, F., Cavallo, D.P., Malerba, D.: Completion time and next activity prediction of processes using sequential pattern mining. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 49–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_5
Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-8_8
Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P., ter Hofstede, A.H.: A recommendation system for predicting risks across multiple business process instances. Decis. Support. Syst. 69, 1–19 (2015)
Di Francescomarino, C., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process monitoring methods: which one suits me best? In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 462–479. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_27
van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: when will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88871-0_22
Dozat, T.: Incorporating nesterov momentum into adam. Technical report, Stanford University (2016). http://cs229.stanford.edu/proj2015/054_report.pdf
van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19
Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support. Syst. 100, 129–140 (2017)
Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5_18
Folino, F., Guarascio, M., Pontieri, L.: Discovering high-level performance models for ticket resolution processes. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 275–282. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_18
Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: what’s next in business intelligence? In: Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, pp. 1–6. ACM (2004)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Jolliffe, I.T.: Uncertainty and inference for verification measures. Weather Forecast. 22(3), 637–650 (2007)
Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Runtime prediction of service level agreement violations for composite services. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave -2009. LNCS, vol. 6275, pp. 176–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16132-2_17
Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)
Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A., Toro, M.: Run-time prediction of business process indicators using evolutionary decision rules. Expert. Syst. Appl. 87, 1–14 (2017)
Navarin, N., Vincenzi, B., Polato, M., Sperduti, A.: LSTM networks for data-aware remaining time prediction of business process instances. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)
Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Data-aware remaining time prediction of business process instances. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 816–823. IEEE (2014)
Polato, M., Sperduti, A., Burattin, A., de Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100(9), 1005–1031 (2018)
Reijers, H.A.: Case prediction in BPM systems: a research challenge. J. Korean Inst. Ind. Eng. 33(1), 1–10 (2007)
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Tu, T.B.H., Song, M.: Analysis and prediction cost of manufacturing process based on process mining. In: 2016 International Conference on Industrial Engineering, Management Science and Application (ICIMSA), pp. 1–5. IEEE (2016)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gunnarsson, B.R., vanden Broucke, S.K.L.M., De Weerdt, J. (2019). Predictive Process Monitoring in Operational Logistics: A Case Study in Aviation. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds) Business Process Management Workshops. BPM 2019. Lecture Notes in Business Information Processing, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-37453-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-37453-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37452-5
Online ISBN: 978-3-030-37453-2
eBook Packages: Computer ScienceComputer Science (R0)