Reinforcement Learning Based Signal Quality Aware Handover Scheme for LEO Satellite Communication Networks | SpringerLink
Skip to main content

Reinforcement Learning Based Signal Quality Aware Handover Scheme for LEO Satellite Communication Networks

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11956))

Included in the following conference series:

  • 1923 Accesses

Abstract

With the increasing of Low Earth Orbit (LEO) satellites emission, utilizing existing LEO satellite network systems have lower CAPEX/OPEX than deploying fixed terrestrial network systems in the remote area. Due to the high mobility of LEO satellites, mobility management mechanisms such as handover schemes are the key issue should be settled on leveraging the merits of LEO satellites telecommunications (e.g. lower propagation delay than GEO satellites). In traditional handover schemes, choosing which one is the next-hop satellite for one user is only determined by evaluating some specific criteria in the current state, not guaranteeing long-term and global optimization. To solve this problem, we use the cumulative signal quality that involves the remaining service time and signal quality and propose a Q-Learning based handover scheme. The simulation results show that the proposed scheme improves the overall signal quality and reduce the average handover number of users compared with other handover schemes.

This work is supported by National Key R&D Program of China No. 2018YFB1201500, National Natural Science Foundation of China under Grant No. 61771072, and Beijing Natural Science Foundation under granted No. L171011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Rawi, H.A., Ng, M.A., Yau, K.L.A.: Application of reinforcement learning to routing in distributed wireless networks: a review. Artif. Intell. Rev. 43(3), 381–416 (2015)

    Article  Google Scholar 

  2. Ali, I., Al-Dhahir, N., Hershey, J.E.: Predicting the visibility of LEO satellites. IEEE Trans. Aerosp. Electron. Syst. 35(4), 1183–1190 (1999)

    Article  Google Scholar 

  3. Bertiger, B.R., Leopold, R.J., Peterson, K.M.: Method of predicting cell-to-cell hand-offs for a satellite cellular communications system, uS Patent 5,161,248, 3 Nov 1992

    Google Scholar 

  4. Charalambous, C.D., Menemenlis, N.: Stochastic models for short-term multipath fading channels: chi-square and Ornstein-Uhlenbeck processes. In: Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No. 99CH36304), vol. 5, pp. 4959–4964. IEEE (1999)

    Google Scholar 

  5. Chini, P., Giambene, G., Kota, S.: A survey on mobile satellite systems. Int. J. Satell. Commun. Netw. 28(1), 29–57 (2010)

    Google Scholar 

  6. Chowdhury, P.K., Atiquzzaman, M., Ivancic, W.: Handover schemes in satellite networks: state-of-the-art and future research directions. IEEE Commun. Surv. Tutorials 8(4), 2–14 (2006)

    Article  Google Scholar 

  7. Del Re, E., Fantacci, R., Giambene, G.: Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks. IEEE J. Sel. Areas Commun. 13(2), 397–405 (1995)

    Article  Google Scholar 

  8. Del Re, E., Fantacci, R., Giambene, G.: Handover queuing strategies with dynamic and fixed channel allocation techniques in low earth orbit mobile satellite systems. IEEE Trans. Commun. 47(1), 89–102 (1999)

    Article  Google Scholar 

  9. Duan, C., Feng, J., Chang, H., Song, B., Xu, Z.: A novel handover control strategy combined with multi-hop routing in LEO satellite networks. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 845–851. IEEE (2018)

    Google Scholar 

  10. Gkizeli, M., Tafazolli, R., Evans, B.: Modeling handover in mobile satellite diversity based systems. In: Proceedings of the IEEE 54th Vehicular Technology Conference on VTC Fall 2001, (Cat. No. 01CH37211), vol. 1, pp. 131–135. IEEE (2001)

    Google Scholar 

  11. Li, R., Zhao, Z., Chen, X., Palicot, J., Zhang, H.: TACT: a transfer actor-critic learning framework for energy saving in cellular radio access networks. IEEE Trans. Wireless Commun. 13(4), 2000–2011 (2014)

    Article  Google Scholar 

  12. Liu, Y.J., Tang, L., Tong, S., Chen, C.P., Li, D.J.: Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time mimo systems. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 165–176 (2015)

    Article  MathSciNet  Google Scholar 

  13. Moura, J., Edwards, C.: Future trends and challenges for mobile and convergent networks. arXiv preprint arXiv:1601.06202 (2016)

  14. Papapetrou, E., Karapantazis, S., Dimitriadis, G., Pavlidou, F.N.: Satellite handover techniques for LEO networks. Int. J. Satell. Commun. Netw. 22(2), 231–245 (2004)

    Article  Google Scholar 

  15. Papapetrou, E., Pavlidou, F.N.: QoS handover management in LEO/MEO satellite systems. Wireless Pers. Commun. 24(2), 189–204 (2003)

    Article  Google Scholar 

  16. Sadek, M., Aissa, S.: Personal satellite communication: technologies and challenges. IEEE Wirel. Commun. 19(6), 28–35 (2012)

    Article  Google Scholar 

  17. Seyedi, Y., Safavi, S.M.: On the analysis of random coverage time in mobile LEO satellite communications. IEEE Commun. Lett. 16(5), 612–615 (2012)

    Article  Google Scholar 

  18. Sweeting, M.N.: Modern small satellites-changing the economics of space. Proc. IEEE 106(3), 343–361 (2018)

    Article  Google Scholar 

  19. Taleb, T., Hadjadj-Aoul, Y., Ahmed, T.: Challenges, opportunities, and solutions for converged satellite and terrestrial networks. IEEE Wirel. Commun. 18(1), 46–52 (2011)

    Article  Google Scholar 

  20. Wu, Z., Jin, F., Luo, J., Fu, Y., Shan, J., Hu, G.: A graph-based satellite handover framework for LEO satellite communication networks. IEEE Commun. Lett. 20(8), 1547–1550 (2016)

    Article  Google Scholar 

  21. Yue, P.C., Qu, H., Zhao, J.H., Wang, M., Wang, K., Liu, X.: An inter satellite link handover management scheme based on link remaining time. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 1799–1803. IEEE (2016)

    Google Scholar 

  22. Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: a survey. arXiv preprint arXiv:1803.04311 (2018)

  23. Zhang, Y., Kang, C., Ma, T., Teng, Y., Guo, D.: Power allocation in multi-cell networks using deep reinforcement learning. In: 2018 Technology Conference (VTC-Fall). IEEE (2018)

    Google Scholar 

  24. Zhao, W., Tafazolli, R., Evans, B.: Combined handover algorithm for dynamic satellite constellations. Electron. Lett. 32(7), 622–624 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menting Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, M., Zhang, Y., Teng, Y., Liu, B., Zhang, L. (2019). Reinforcement Learning Based Signal Quality Aware Handover Scheme for LEO Satellite Communication Networks. In: Milošević, D., Tang, Y., Zu, Q. (eds) Human Centered Computing. HCC 2019. Lecture Notes in Computer Science(), vol 11956. Springer, Cham. https://doi.org/10.1007/978-3-030-37429-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37429-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37428-0

  • Online ISBN: 978-3-030-37429-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics