Abstract
The article describes the problem of classifying photographs of advertising signs of commercial establishments according to the type of services provided. The proposed solution is based on the sharing of textual and visual features. We provide a composite model that includes a text recognition module and an extractor of visual characteristics to improve classification accuracy. We achieve \(F_1\) of 0.24 exceeding strong baseline quality for 10%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use publicly available pre-trained model which could be accessed here: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing.
References
Intasuwan, T., Kaewthong, J., Vittayakorn, S.: Text and object detection on billboards. In: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 6–11 (July 2018)
Zhou, J., McGuinness, K., O’Connor, N.E.: A text recognition and retrieval system for e-business image management. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 23–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_3
Watve, A., Sural, S.: Soccer video processing for the detection of advertisement billboards. Pattern Recogn. Lett. 29(7), 994–1006 (2008)
Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (June 2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (June 2009)
Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4
Zhou, X., et al.: East: an efficient and accurate scene text detector. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2651 (July 2017)
Smith, R.: An overview of the Tesseract OCR engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633 (September 2007)
Liu, T., Fang, S., Zhao, Y., Wang, P., Zhang, J.: Implementation of training convolutional neural networks. CoRR. arXiv:1506.01195 (2015)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality, vol. 26, p. 10 (2013)
Malykh, V.: Robust word vectors for Russian language. In: Proceedings of Artificial Intelligence and Natural Language AINL FRUCT 2016 Conference, Saint-Petersburg, Russia, pp. 10–12 (2016)
Cucerzan, S., Brill, E.: Spelling correction as an iterative process that exploits the collective knowledge of web users, vol. 4, pp. 293–300 (2004)
Lang, K.: NewsWeeder: Learning to filter netnews. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 331–339 (1995)
Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 1457–1464. IEEE Computer Society, Washington (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Malykh, V., Samarin, A. (2019). Combined Advertising Sign Classifier. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2019. Lecture Notes in Computer Science(), vol 11832. Springer, Cham. https://doi.org/10.1007/978-3-030-37334-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-37334-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-37333-7
Online ISBN: 978-3-030-37334-4
eBook Packages: Computer ScienceComputer Science (R0)