Application Identification of Network Traffic by Reservoir Computing | SpringerLink
Skip to main content

Application Identification of Network Traffic by Reservoir Computing

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Abstract

We propose a method for application identification for network traffic by reservoir computing. Different from conventional approaches, the proposed method handles traffic flows as dynamical time series data and enables fast and real-time identification. We apply the proposed method to real traffic data and show that high identification accuracy is achieved. We also discuss an implementation as physical reservoirs based on optics and the impact of the proposed method to 5G networking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Héroux, J.B., Numata, H., Nakano, D.: Polymer waveguide-based reservoir computing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10639, pp. 840–848. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70136-3_89

    Chapter  Google Scholar 

  2. Héroux, J.B., Kanazawa, N., Nakano, D.: Delayed feedback reservoir computing with VCSEL. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 594–602. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_54

    Chapter  Google Scholar 

  3. Héroux, J.B., et al.: Optoelectronic reservoir computing with VCSEL. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2018)

    Google Scholar 

  4. Lashkari, A.H., et al.: Characterization of Tor traffic using time based features. In: The Proceedings of the 3rd International Conference on Information System Security and Privacy. SCITEPRESS, Porto, Portugal (2017)

    Google Scholar 

  5. Li, R., et al.: Byte segment neural network for network traffic classification, June 2018

    Google Scholar 

  6. Lopez-Martin, M., et al.: Network traffic classifier with convolutional and recurrent neural networks for Internet of Things. IEEE Access 5, 18042–18050 (2017)

    Article  Google Scholar 

  7. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  Google Scholar 

  8. Nakao, A., Du, P.: Toward in-network deep machine learning for identifying mobile applications and enabling application specific network slicing. Inst. Electron. Inf. Commun. Eng. Trans. Commun. E101B(7), 1536–1543 (2018)

    Article  Google Scholar 

  9. Perera, P., Tian, Y.C., Fidge, C., Kelly, W.: A comparison of supervised machine learning algorithms for classification of communications network traffic. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCs, vol. 10634, pp. 445–454. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_47

    Chapter  Google Scholar 

  10. Takeda, S., et al.: Photonic reservoir computing based on laser dynamics with external feedback. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9947, pp. 222–230. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46687-3_24

    Chapter  Google Scholar 

  11. Tanaka, G., et al.: Recent advances in physical reservoir computing: a review. Neural Netw. J. 115, 100–123 (2019). https://doi.org/10.1016/j.neunet.2019.03.005

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by New Energy and Industrial Technology Development Organization (NEDO) under contract No. 18102284-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Yamane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamane, T., Héroux, J.B., Numata, H., Tanaka, G., Nakane, R., Hirose, A. (2019). Application Identification of Network Traffic by Reservoir Computing. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-030-36802-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36802-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36801-2

  • Online ISBN: 978-3-030-36802-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics