Real-Time Financial Data Prediction Using Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine | SpringerLink
Skip to main content

Real-Time Financial Data Prediction Using Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11955))

Included in the following conference series:

  • 2930 Accesses

Abstract

This paper proposes a novel algorithm called Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine with a kernel filter and a modified Drift Detector Mechanism (Meta-RKOS-ELM\(_\mathrm{ALD}\)-DDM). The algorithm aims to tackle a well-known concept drift problem in time series prediction by utilising the modified concept drift detector mechanism. Moreover, the new meta-cognitive learning strategy is employed to solve parameter dependency and reduce learning time. The experimental results show that the proposed method can achieve better performance than the conventional algorithm in a set of financial datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altman, E.I., Iwanicz-Drozdowska, M., Laitinen, E.K., Suvas, A.: Financial distress prediction in an international context: a review and empirical analysis of Altman’s z-score model. J. Int. Financ. Manage. Acc. 28(2), 131–171 (2017)

    Article  Google Scholar 

  2. Dixon, M., Klabjan, D., Bang, J.H.: Classification-based financial markets prediction using deep neural networks. Algorithmic Financ. 6(3–4), 67–77 (2017)

    Article  Google Scholar 

  3. Das, S., Behera, R.K., Kumar, M., Rath, S.K.: Real-time sentiment analysis of twitter streaming data for stock prediction. Proc. Comput. Sci. 132, 956–964 (2018)

    Article  Google Scholar 

  4. Liu, C., Arunkumar, N.: Risk prediction and evaluation of transnational transmission of financial crisis based on complex network. Clust. Comput. 22(Suppl. 2), 4307–4313 (2019). https://doi.org/10.1007/s10586-018-1870-3

    Article  Google Scholar 

  5. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, London (2009)

    Google Scholar 

  6. Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018)

    Article  MathSciNet  Google Scholar 

  7. Liu, Z., Loo, C.K., Masuyama, N., Pasupa, K.: Recurrent kernel extreme reservoir machine for time series prediction. IEEE Access 6, 19583–19596 (2018). https://doi.org/10.1109/ACCESS.2018.2823336

    Article  Google Scholar 

  8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Netw. 2, 985–990 (2004)

    Google Scholar 

  9. Huang, G.B., Liang, N.Y., Rong, H.J., Saratchandran, P., Sundararajan, N.: On-line sequential extreme learning machine. In: Proceedings of the IASTED International Conference on Computational Intelligence (CI 2005), Calgary, Canada, 4–6 July 2005, pp. 232–237 (2005)

    Google Scholar 

  10. Scardapane, S., Comminiello, D., Scarpiniti, M., Uncini, A.: Online sequential extreme learning machine with kernels. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2214–2220 (2015)

    Article  MathSciNet  Google Scholar 

  11. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  12. Cavalcante, R.C., Minku, L.L., Oliveira, A.L.: FEDD: feature extraction for explicit concept drift detection in time series. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2016), pp. 740–747 (2016)

    Google Scholar 

  13. Mittal, V., Kashyap, I.: Online methods of learning in occurrence of concept drift. Int. J. Comput. Appl. 117(13), 18–22 (2015). https://doi.org/10.5120/20614-3280

    Article  Google Scholar 

  14. Liu, Z., Loo, C.K., Pasupa, K.: Handling concept drift in time-series data: meta-cognitive recurrent recursive-kernel OS-ELM. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11306, pp. 3–13. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04224-0_1

    Chapter  Google Scholar 

  15. Liu, Z., Loo, C.K., Seera, M.: Meta-cognitive recurrent recursive kernel OS-ELM for concept drift handling. Appl. Soft Comput. 75, 494–507 (2019)

    Article  Google Scholar 

  16. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  17. Chen, B., Liang, J., Zheng, N., Príncipe, J.C.: Kernel least mean square with adaptive kernel size. Neurocomputing 191, 95–106 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Frontier Research Grant from the University of Malaya (Project No. FG003-17AFR), the International Collaboration Fund from MESTECC (Project No. CF001-2019), ONRG NICOP grant (Project No: IF017-2018) from Office of Naval Research Global, UK, and the Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitsuchart Pasupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Loo, C.K., Pasupa, K. (2019). Real-Time Financial Data Prediction Using Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics