Abstract
This paper proposes a novel algorithm called Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine with a kernel filter and a modified Drift Detector Mechanism (Meta-RKOS-ELM\(_\mathrm{ALD}\)-DDM). The algorithm aims to tackle a well-known concept drift problem in time series prediction by utilising the modified concept drift detector mechanism. Moreover, the new meta-cognitive learning strategy is employed to solve parameter dependency and reduce learning time. The experimental results show that the proposed method can achieve better performance than the conventional algorithm in a set of financial datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altman, E.I., Iwanicz-Drozdowska, M., Laitinen, E.K., Suvas, A.: Financial distress prediction in an international context: a review and empirical analysis of Altman’s z-score model. J. Int. Financ. Manage. Acc. 28(2), 131–171 (2017)
Dixon, M., Klabjan, D., Bang, J.H.: Classification-based financial markets prediction using deep neural networks. Algorithmic Financ. 6(3–4), 67–77 (2017)
Das, S., Behera, R.K., Kumar, M., Rath, S.K.: Real-time sentiment analysis of twitter streaming data for stock prediction. Proc. Comput. Sci. 132, 956–964 (2018)
Liu, C., Arunkumar, N.: Risk prediction and evaluation of transnational transmission of financial crisis based on complex network. Clust. Comput. 22(Suppl. 2), 4307–4313 (2019). https://doi.org/10.1007/s10586-018-1870-3
Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, London (2009)
Fischer, T., Krauss, C.: Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 270(2), 654–669 (2018)
Liu, Z., Loo, C.K., Masuyama, N., Pasupa, K.: Recurrent kernel extreme reservoir machine for time series prediction. IEEE Access 6, 19583–19596 (2018). https://doi.org/10.1109/ACCESS.2018.2823336
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. Neural Netw. 2, 985–990 (2004)
Huang, G.B., Liang, N.Y., Rong, H.J., Saratchandran, P., Sundararajan, N.: On-line sequential extreme learning machine. In: Proceedings of the IASTED International Conference on Computational Intelligence (CI 2005), Calgary, Canada, 4–6 July 2005, pp. 232–237 (2005)
Scardapane, S., Comminiello, D., Scarpiniti, M., Uncini, A.: Online sequential extreme learning machine with kernels. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2214–2220 (2015)
Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)
Cavalcante, R.C., Minku, L.L., Oliveira, A.L.: FEDD: feature extraction for explicit concept drift detection in time series. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2016), pp. 740–747 (2016)
Mittal, V., Kashyap, I.: Online methods of learning in occurrence of concept drift. Int. J. Comput. Appl. 117(13), 18–22 (2015). https://doi.org/10.5120/20614-3280
Liu, Z., Loo, C.K., Pasupa, K.: Handling concept drift in time-series data: meta-cognitive recurrent recursive-kernel OS-ELM. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11306, pp. 3–13. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04224-0_1
Liu, Z., Loo, C.K., Seera, M.: Meta-cognitive recurrent recursive kernel OS-ELM for concept drift handling. Appl. Soft Comput. 75, 494–507 (2019)
Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29
Chen, B., Liang, J., Zheng, N., Príncipe, J.C.: Kernel least mean square with adaptive kernel size. Neurocomputing 191, 95–106 (2016)
Acknowledgement
This research was supported by the Frontier Research Grant from the University of Malaya (Project No. FG003-17AFR), the International Collaboration Fund from MESTECC (Project No. CF001-2019), ONRG NICOP grant (Project No: IF017-2018) from Office of Naval Research Global, UK, and the Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Z., Loo, C.K., Pasupa, K. (2019). Real-Time Financial Data Prediction Using Meta-cognitive Recurrent Kernel Online Sequential Extreme Learning Machine. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-36718-3_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36717-6
Online ISBN: 978-3-030-36718-3
eBook Packages: Computer ScienceComputer Science (R0)