Data Augmentation for Deep Learning of Judgment Documents | SpringerLink
Skip to main content

Data Augmentation for Deep Learning of Judgment Documents

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning (IScIDE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11936))

Abstract

With the increasing number of machine learning parameters, the requirements on data quantity are getting higher and higher to train a good model. The choice of methods and the optimization of parameters can improve the model while the quality and quantity of the data determine the upper limit of the model. However, in realistic scenarios, it is quite challenging to get a lot of tag data. Therefore, it is natural to realize data augmentation by transforming the original data. We use three methods for data augmentation on different scales of original data in solving the crime prediction problem based on the description of the cases, and find that the effects of data augmentation are different for different models and different fundamental data quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. In: ACL (2014)

    Google Scholar 

  2. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12 (2004)

    Article  Google Scholar 

  3. Hayashi, T., et al.: Back-translation-style data augmentation for end-to-end ASR. In: 2018 IEEE Spoken Language Technology Workshop (SLT), pp. 426–433. IEEE (2018)

    Google Scholar 

  4. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: FastText.zip: compressing text classification models. arXiv preprint arXiv:1612.03651 (2016)

  5. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882 (2014)

  6. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  7. Liu, C.-L., Hsieh, C.-D.: Exploring phrase-based classification of judicial documents for criminal charges in Chinese. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 681–690. Springer, Heidelberg (2006). https://doi.org/10.1007/11875604_75

    Chapter  Google Scholar 

  8. Luo, B., Feng, Y., Xu, J., Zhang, X., Zhao, D.: Learning to predict charges for criminal cases with legal basis. arXiv preprint arXiv:1707.09168 (2017)

  9. Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 78. ACM (2004)

    Google Scholar 

  10. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  11. Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11(4), 761–767 (1998)

    Article  Google Scholar 

  12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Tang, Z., Zhang, Z., Ma, X., Qin, J., Zhao, M.: Robust neighborhood preserving low-rank sparse CNN features for classification. In: Hong, R., Cheng, W.-H., Yamasaki, T., Wang, M., Ngo, C.-W. (eds.) PCM 2018. LNCS, vol. 11164, pp. 357–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00776-8_33

    Chapter  Google Scholar 

  14. Tang, Z., Jiang, W., Zhang, Z., Zhao, M., Zhang, L., Wang, M.: DenseNet with up-sampling block for recognizing texts in images. Neural Comput. Appl. 1–9

    Google Scholar 

  15. Xiao, C., et al.: CAIL2018: a large-scale legal dataset for judgment prediction. arXiv preprint arXiv:1807.02478 (2018)

  16. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Advances in Neural Information Processing Systems, pp. 649–657 (2015)

    Google Scholar 

  17. Zhong, H., Zhipeng, G., Tu, C., Xiao, C., Liu, Z., Sun, M.: Legal judgment prediction via topological learning. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3540–3549 (2018)

    Google Scholar 

  18. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgment

The work is supported in part by the National Key Research and Development Program of China (2016YFC0800805) and the National Natural Science Foundation of China (61472176, 61772014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, G., Li, Y., Zhang, S., Chen, Z. (2019). Data Augmentation for Deep Learning of Judgment Documents. In: Cui, Z., Pan, J., Zhang, S., Xiao, L., Yang, J. (eds) Intelligence Science and Big Data Engineering. Big Data and Machine Learning. IScIDE 2019. Lecture Notes in Computer Science(), vol 11936. Springer, Cham. https://doi.org/10.1007/978-3-030-36204-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36204-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36203-4

  • Online ISBN: 978-3-030-36204-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics