Abstract
A mechanism is presented for classifying phonocardiograms (PCGs) by interpreting PCGs as time series and using the concept of motifs, times series subsequences that are good discriminators of class, to support nearest neighbour classification. A particular challenge addressed by the work is that PCG time series are large which renders exact motif discovery to be computationally expensive; it is not realistic to compare every candidate time series subsequence with every other time series subsequence in order to discover exact motifs. Instead, a mechanism is proposed the firstly makes use of the cyclic nature of PCGs and secondly adopts a novel time series pruning mechanism. The evaluation, conducted using a canine PCG dataset, illustrated that the proposed approach produced the same classification accuracy but in a significantly more efficient manner.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alhijailan, H., Coenen, F., Dukes-McEwan, J., Thiyagalingam, J.: Segmenting sound waves to support phonocardiogram analysis: the PCGseg approach. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11013, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97310-4_12
Atkins, C., et al.: Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J. Vet. Intern. Med. 23(6), 1142–1150 (2009). https://doi.org/10.1111/j.1939-1676.2009.0392.x
Bagnall, A., Hills, J., Lines, J.: Finding motif sets in time series. CoRR, July 2014
Cherif, L.H., Debba, S.: Variability of pulmonary blood pressure, splitting of the second heart sound and heart rate. J. Clin. Exp. Cardiol. 8(10), 1–3 (2017). https://doi.org/10.4172/2155-9880.1000550
Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 493–498. ACM, New York (2003). https://doi.org/10.1145/956750.956808
Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press Tutorial, IEEE Computer Society Press, the University of Michigan (1991)
Dau, H.A., Keogh, E.: Matrix profile V: a generic technique to incorporate domain knowledge into motif discovery. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 125–134. ACM, New York (2017). https://doi.org/10.1145/3097983.3097993
Delgado-Trejos, E., Quiceno-Manrique, A., Godino-Llorente, J., Blanco-Velasco, M., Castellanos-Dominguez, G.: Digital auscultation analysis for heart murmur detection. Ann. Biomed. Eng. 37(2), 337–353 (2009). https://doi.org/10.1007/s10439-008-9611-z
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008). https://doi.org/10.14778/1454159.1454226
Gao, Y., Lin, J., Rangwala, H.: Iterative grammar-based framework for discovering variable-length time series motifs. In: IEEE International Conference on Data Mining, pp. 111–116. IEEE, November 2017. https://doi.org/10.1109/ICDM.2017.20
Guéhéneuc, Y.G., Antoniol, G.: DeMIMA: a multilayered approach for design pattern identification. IEEE Trans. Softw. Eng. 34(5), 667–684 (2008). https://doi.org/10.1109/TSE.2008.48
Hamza Cherif, L., Debbal, S.M., Bereksi-Reguig, F.: Segmentation of heart sounds and heart murmurs. J. Mech. Med. Biol. 8(4), 549–559 (2008). https://doi.org/10.1142/S0219519408002759
Hannan, E.J.: Time Series Analysis. Chapman and Hall, London (1960)
Hutchins, L.N., Murphy, S.M., Singh, P., Graber, J.H.: Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics 24(23), 2684–2690 (2008). https://doi.org/10.1093/bioinformatics/btn526
Krejci, A., Hupp, T.R., Lexa, M., Vojtesek, B., Muller, P.: Hammock: a hidden markov model-based peptide clustering algorithm to identify protein-interaction consensus motifs in large datasets. Bioinformatics 32(1), 9–16 (2016). https://doi.org/10.1093/bioinformatics/btv522
Lehner, R.J., Rangayyan, R.M.: A three-channel microcomputer system for segmentation and characterization of the phonocardiogram. IEEE Trans. Biomed. Eng. 34(6), 485–489 (1987). https://doi.org/10.1109/TBME.1987.326060
Li, N., Crane, M., Gurrin, C., Ruskin, H.J.: Finding motifs in large personal lifelogs. In: Proceedings of the 7th Augmented Human International Conference 2016, pp. 1–8. ACM, New York (2016). https://doi.org/10.1145/2875194.2875214
Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 53–68 (2002)
Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007). https://doi.org/10.1007/s10618-007-0064-z
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002). https://doi.org/10.1126/science.298.5594.824
Mubarak, Q., Akram, M.U., Shaukat, A., Ramazan, A.: Quality assessment and classification of heart sounds using PCG signals. In: Khan, F., Jan, M.A., Alam, M. (eds.) Applications of Intelligent Technologies in Healthcare. EICC, pp. 1–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96139-2_1
Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 473–484 (2009). https://doi.org/10.1137/1.9781611972795.41
Nakamura, K., et al.: Left atrial strain at different stages of myxomatous mitral valve disease in dogs. J. Vet. Intern. Med. 31(2), 316–325 (2017). https://doi.org/10.1111/jvim.14660
Oliveira, J., Sousa, C., Coimbra, M.: Coupled hidden Markov model for automatic ECG and PCG segmentation. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1023–1027, March 2017. https://doi.org/10.1109/ICASSP.2017.7952311
Ramli, D., Hooi, M., Chee, K.: Development of heartbeat detection kit for biometric authentication system. Procedia Comput. Sci. 96, 305–314 (2016). https://doi.org/10.1016/j.procs.2016.08.143
Stojanović, M.B., Božić, M.M., Stanković, M.M., Stajić, Z.P.: A methodology for training set instance selection using mutual information in time series prediction. Neurocomputing 141(Supplement C), 236–245 (2014). https://doi.org/10.1016/j.neucom.2014.03.006
Thijs, G., et al.: A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J. Comput. Biol. 9(2), 447–464 (2004). https://doi.org/10.1089/10665270252935566
Torkamani, S., Lohweg, V.: Survey on time series motif discovery. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 7(2), 1–8 (2017). https://doi.org/10.1002/widm.1199
Vahdatpour, A., Amini, N., Sarrafzadeh, M.: Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 1261–1266. Morgan Kaufmann Publishers Inc., San Francisco (2009)
Vaswani, A., Khaw, H.J., Dougherty, S., Zamvar, V., Lang, C.: Cardiology in a Heartbeat. Scion Publishing Limited, Banbury (2015)
Wang, X., Fang, Z., Wang, P., Zhu, R., Wang, W.: A distributed multi-level composite index for KNN processing on long time series. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 215–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55753-3_14
Zhao, Y., et al.: Measurement of two new indicators of cardiac reserve in humans, rats, rabbits, and dogs. J. Biomed. Sci. Eng. 6(10), 960–963 (2013). https://doi.org/10.4236/jbise.2013.610118
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Alhijailan, H., Coenen, F. (2019). Motif Discovery in Long Time Series: Classifying Phonocardiograms. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXVI. SGAI 2019. Lecture Notes in Computer Science(), vol 11927. Springer, Cham. https://doi.org/10.1007/978-3-030-34885-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-34885-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34884-7
Online ISBN: 978-3-030-34885-4
eBook Packages: Computer ScienceComputer Science (R0)