Abstract
Data visualization at large can be described as a process that reduces data to mentally comprehensible visual products. Many visualizations are based on very large and complex data, often integrating multiple data sources and complex measures and concepts. Communicating to broad audiences involves drastically simplifying the message, extracting salient concepts and often omitting low-level details. In this chapter we give two examples for data visualizations in the field of climate research that proved to be successful in supporting communication to broad audiences. In a research institute setting, striking a balance between scientific correctness and comprehensibility is key. We describe how a careful design of the visual encoding such as reducing data dimensionality, dealing with data issues (e.g. uncertainty), the number of colors, and choice of visual elements is important to achieve simplicity. Finally, we describe two technical settings that we use for face-to-face communication of climate research results to broad audiences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cubasch, U., Wuebbles, D., Chen, D., Facchini, M., Frame, D., Mahowald, N., Winther, J.G.: IPCC Climate Change 2013: Introduction, Book section 1, pp. 119–158. Cambridge University Press, Cambridge, UK and New York, NY, USA. www.climatechange2013.org (2013). https://doi.org/10.1017/CBO9781107415324.007
Daron, J.D., Lorenz, S., Wolski, P., Blamey, R.C., Jack, C.: Interpreting climate data visualisations to inform adaptation decisions. Clim. Risk Manag. 10, 17–26. http://www.sciencedirect.com/science/article/pii/S221209631500025X (2015). https://doi.org/10.1016/j.crm.2015.06.007
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E.: Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization. Geosci. Model. Dev. 9(5), 1937–1958. https://www.geosci-model-dev.net/9/1937/2016/ (2016). https://doi.org/10.5194/gmd-9-1937-2016
Harold, J., Lorenzoni, I., Coventry, K.R., Minns, A.: Enhancing the accessibility of climate change data visuals: recommendations to the IPCC and guidance for researchers. http://www.tyndall.ac.uk/sites/default/files/Data_Visuals_Guidance_Full_Report_0.pdf (2017)
Harold, J., Lorenzoni, I., Shipley, T.F., Coventry, K.R.: Cognitive and psychological science insights to improve climate change data visualization. Nat. Clim. Chang. 6, 1080–1089 (2016). https://doi.org/10.1038/nclimate3162
IPCC: Climate Change 1990 The Science of Climate Change. The Intergovernmental Panel on Climate Change (1990)
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA. www.climatechange2013.org (2013). https://doi.org/10.1017/CBO9781107415324
IPCC: Summary for Policymakers, Book section SPM, pp. 1–30. Cambridge University Press, Cambridge, UK and New York, NY, USA. www.climatechange2013.org (2013). https://doi.org/10.1017/CBO9781107415324.004
Knutti, R., Sedláček, J.: Robustness and uncertainties in the new cmip5 climate model projections. Nat. Clim. Chang. 3, 369–373 (2012). https://doi.org/10.1038/nclimate1716
Orf, L., Wilhelmson, R., Lee, B., Finley, C., Houston, A.: Evolution of a long-track violent tornado within a simulated supercell. Bull. Am. Meteorol. Soc. 98(1), 45–68 (2017). https://doi.org/10.1175/BAMS-D-15-00073.1
Reser, J.P., Bradley, G.L., Ellul, M.C.: Encountering climate change: ‘seeing’ is more than ‘believing’. Wiley Interdiscip. Rev.: Clim. Chang. 5(4), 521–537 (2014). https://doi.org/10.1002/wcc.286
Schneider, B.: Climate model simulation visualization from a visual studies perspective. WIREs Clim Chang. 3(2), 185–193 (2012)
Schneider, B., Nocke, T.: The feeling of red and blue - a constructive critique of color mapping in visual climate change communication. In: Leal Filho, W., Manolas, E., Azul, A.M., Azeiteiro, U.M., McGhie, H. (eds.) Handbook of Climate Change Communication: vol. 2. Climate Change Management, pp. 289–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70066-3_19
Stauffer, R., Mayr, G.J., Dabernig, M., Zeileis, A.: Somewhere over the rainbow: how to make effective use of colors in meteorological visualizations. Bull. Am. Meteorol. Soc. 96, 203–216 (2015). https://doi.org/10.1175/BAMS-D-13-00155.1
Tebaldi, C., Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 365(1857), 2053–2075 (2007). https://doi.org/10.1098/rsta.2007.2076. URL http://rsta.royalsocietypublishing.org/content/365/1857/2053
UCAR/NCAR/CISL/TDD: The NCAR Command Language (Version 6.4.0) [software]. https://www.ncl.ucar.edu/ (2018). https://doi.org/10.5065/D6WD3XH5. Accessed 20 Sept 2018
Williams, D.N., Balaji, V., Cinquini, L., Denvil, S., Duffy, D., Evans, B., Ferraro, R., Hansen, R., Lautenschlager, M., Trenham, C.: A global repository for planet-sized experiments and observations. Bull. Am. Meteorol. Soc. 97(5), 803–816 (2016). https://doi.org/10.1175/BAMS-D-15-00132.1
World Climate Research Programme: A Short Introduction to Climate Models - CMIP. https://www.youtube.com/watch?v=wTBkq9nWNEE (2017). Accessed 04 Oct 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Böttinger, M. (2020). Reaching Broad Audiences from a Research Institute Setting. In: Chen, M., Hauser, H., Rheingans, P., Scheuermann, G. (eds) Foundations of Data Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-34444-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-34444-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34443-6
Online ISBN: 978-3-030-34444-3
eBook Packages: Computer ScienceComputer Science (R0)